1,392 research outputs found
Aldehyde dehydrogenases and prostate cancer: Shedding light on isoform distribution to reveal druggable target
Prostate cancer represents the most common malignancy diagnosed in men, and is the second-leading cause of cancer death in this population. In spite of dedicated efforts, the current therapies are rarely curative, requiring the development of novel approaches based on innovative molecular targets. In this work, we validated aldehyde dehydrogenase 1A1 and 1A3 isoform expressions in different prostatic tissue-derived cell lines (normal, benign and malignant) and patient-derived primary prostate tumor epithelial cells, demonstrating their potential for therapeutic intervention using a small library of aldehyde dehydrogenase inhibitors. Compound 3b, 6-(4-fluorophenyl)-2-phenylimidazo [1,2-a]pyridine exhibited not only antiproliferative activity in the nanomolar range against the P4E6 cell line, derived from localized prostate cancer, and PC3 cell lines, derived from prostate cancer bone metastasis, but also inhibitory efficacy against PC3 colony-forming efficiency. Considering its concomitant reduced activity against normal prostate cells, 3b has the potential as a lead compound to treat prostate cancer by means of a still untapped molecular target
The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance
Dynamics of reentry are studied in a one dimensional loop of model cardiac
cells with discrete intercellular gap junction resistance (). Each cell is
represented by a continuous cable with ionic current given by a modified
Beeler-Reuter formulation. For below a limiting value, propagation is found
to change from period-1 to quasi-periodic () at a critical loop length
() that decreases with . Quasi-periodic reentry exists from
to a minimum length () that is also shortening with .
The decrease of is not a simple scaling, but the bifurcation can
still be predicted from the slope of the restitution curve giving the duration
of the action potential as a function of the diastolic interval. However, the
shape of the restitution curve changes with .Comment: 6 pages, 7 figure
Targeting the rheumatoid arthritis synovial fibroblast via cyclin dependent kinase inhibition: An early phase trial
Introduction: Targeted biologic therapies demonstrate similar efficacies in rheumatoid arthritis despite distinct mechanisms of action. They also exhibit a ceiling effect, with 10% to 20% of patients achieving remission in clinical trials. None of these therapies target synovial fibroblasts, which drive and maintain synovitis. Seliciclib (R-roscovitine) is an orally available cyclin-dependent kinase inhibitor that suppresses fibroblast proliferation, and is efficacious in preclinical arthritis models. We aim to determine the toxicity and preliminary efficacy of seliciclib in combination with biologic therapies, to inform its potential as an adjunctive therapy in rheumatoid arthritis.
Methods and analysis: TRAFIC is a non-commercial, multi-center, rolling phase Ib/IIa trial investigating the safety, tolerability, and efficacy of seliciclib in patients with moderate to severe rheumatoid arthritis receiving biologic therapies. All participants receive seliciclib with no control arm. The primary objective of part 1 (phase Ib) is to determine the maximum tolerated dose and safety of seliciclib over 4 weeks of dosing. Part 1 uses a restricted 1-stage Bayesian continual reassessment method based on a target dose-limiting toxicity probability of 35%. Part 2 (phase IIa) assesses the potential efficacy of seliciclib, and is designed as a single arm, single stage early phase trial based on a Fleming-AâHern design using the maximum tolerated dose recommended from part 1. The primary response outcome after 12 weeks of therapy is a composite of clinical, histological and magnetic resonance imaging scores. Secondary outcomes include adverse events, pharmacodynamic and pharmacokinetic parameters, autoantibodies, and fatigue.
Ethics and dissemination: The study has been reviewed and approved by the North East - Tyne & Wear South Research Ethics Committee (reference 14/NE/1075) and the Medicines and Healthcare Products Regulatory Agency (MHRA), United Kingdom. Results will be disseminated through publication in relevant peer-reviewed journals and presentation at national and international conferences.
Trials Registration: ISRCTN, ISRCTN36667085. Registered on September 26, 2014; http://www.isrctn.com/ISRCTN36667085
Current protocol version: Protocol version 11.0 (March 21, 2019
Gaussian stationary processes over graphs, general frame and maximum likelihood identification
In this paper, using spectral theory of Hilbertian operators, we study ARMA
Gaussian processes indexed by graphs. We extend Whittle maximum likelihood
estimation of the parameters for the corresponding spectral density and show
their asymptotic optimality
Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer
The PI3K/AKT/mTOR pathway is frequently activated in advanced prostate cancer, due to loss of the tumour suppressor PTEN, and is an important axis for drug development. We have assessed the molecular and functional consequences of pathway blockade by inhibiting AKT and mTOR kinases either in combination or as individual drug treatments. In established prostate cancer cell lines, a decrease in cell viability and in phospho-biomarker expression was observed. Although apoptosis was not induced, a G1 growth arrest was observed in PTEN null LNCaP cells, but not in BPH1 or PC3 cells. In contrast, when the AKT inhibitor AZD7328 was applied to patient-derived prostate cultures that retained expression of PTEN, activation of a compensatory Ras/MEK/ERK pathway was observed. Moreover, whilst autophagy was induced following treatment with AZD7328, cell viability was less affected in the patient-derived cultures than in cell lines. Surprisingly, treatment with a combination of both AZD7328 and two separate MEK1/2 inhibitors further enhanced phosphorylation of ERK1/2 in primary prostate cultures. However, it also induced irreversible growth arrest and senescence.Ex vivo treatment of a patient-derived xenograft (PDX) of prostate cancer with a combination of AZD7328 and the mTOR inhibitor KU-0063794, significantly reduced tumour frequency upon re-engraftment of tumour cells.The results demonstrate that single agent targeting of the PI3K/AKT/mTOR pathway triggers activation of the Ras/MEK/ERK compensatory pathway in near-patient samples. Therefore, blockade of one pathway is insufficient to treat prostate cancer in man
Recommended from our members
Population-based emergence of unfamiliar climates
Time of emergence, which characterizes when significant signals of climate change will emerge from existing variability, is a useful and increasingly common metric. However, a more useful metric for understanding future climate change in the context of past experience may be the ratio of climate signal to noise (S/N)âa measure of the amplitude of change expressed in terms of units of existing variability. Here, we present S/N projections in the context of emergent climates (termed âunusualâ, âunfamiliarâ and âunknownâ by reference to an individualâs lifetime), highlighting sensitivity to future emissions scenarios and geographical and human groupings. We show how for large sections of the worldâs population, and for several geopolitical international groupings, mitigation can delay the onset of âunknownâ or âunfamiliarâ climates by decades, and perhaps even beyond 2100. Our results demonstrate that the benefits of mitigation accumulate over several decades, a key metric of which is reducing S/N, or keeping climate as familiar as possible. A relationship is also identified between cumulative emissions and patterns of emergent climate signals. Timely mitigation will therefore provide the greatest benefits to those facing the earliest impacts, many of whom are alive now
Stampidine prevents mortality in an experimental mouse model of viral hemorrhagic fever caused by lassa virus
BACKGROUND: The potential use of microorganisms as agents of biological warfare (BW) is a growing concern. Lassa virus, a member of the Arenavirus class of Hemorrhagic fever (HF) viruses has emerged as a worldwide concern among public health officials. The purpose of the present study was to further elucidate the antiviral activity spectrum of stampidine, a novel nucleoside analog with potent anti-viral activity against the immunodeficiency viruses HIV-1, HIV-2, and FIV, by examining its effects on survival of mice challenged with Lassa virus. METHODS: We examined the therapeutic effect of Stampidine in CBA mice inoculated with intracerebral injections of the Josiah strain of Lassa virus. Mice were treated either with vehicle or nontoxic doses of stampidine administered intraperitoneally 24 hours prior to, 1 hour prior to, and 24 hours, 48 hours, 72 hours, and 96 hours after virus inoculation. RESULTS: The probability of survival following the Lassa challenge was significantly improved for stampidine treated mice (Kaplan Meier, Chi-squared = 11.7, df = 2, Log-Rank p-value = 0.003). CONCLUSION: Therefore, stampidine shows clinical potential as a new agent for treatment of viral hemorrhagic fevers caused by Lassa virus
An Analysis of the Systemic Risks Posed by Fannie Mae and Freddie Mac and an Evaluation of the Policy Options for Reducing those Risks
Fannie Mae and Freddie Mac are government-sponsored enterprises that are central players in U.S. secondary mortgage markets. Over the past decade, these institutions have amassed enormous mortgage- and non-mortgage-oriented investment portfolios that pose significant interest-rate risks to the companies and a systemic risk to the financial system. This paper describes the nature of these risks and systemic concerns and then evaluates several policy options for reducing the institutionsâ investment portfolios. We conclude that limits on portfolio size (assets or liabilities) would be the most desirable approach to mitigating the systemic risk posed by Fannie Mae and Freddie Mac
- âŠ