46 research outputs found

    Heart Rate and Use of Beta-Blockers in Stable Outpatients with Coronary Artery Disease

    Get PDF
    <p><b>Background:</b> Heart rate (HR) is an emerging risk factor in coronary artery disease (CAD). However, there is little contemporary data regarding HR and the use of HR-lowering medications, particularly beta-blockers, among patients with stable CAD in routine clinical practice. The goal of the present analysis was to describe HR in such patients, overall and in relation to beta-blocker use, and to describe the determinants of HR.</p> <p><b>Methods and Findings:</b> CLARIFY is an international, prospective, observational, longitudinal registry of outpatients with stable CAD, defined as prior myocardial infarction or revascularization procedure, evidence of coronary stenosis of >50%, or chest pain associated with proven myocardial ischemia. A total of 33,438 patients from 45 countries in Europe, the Americas, Africa, Middle East, and Asia/Pacific were enrolled between November 2009 and July 2010. Most of the 33,177 patients included in this analysis were men (77.5%). Mean (SD) age was 64.2 (10.5) years, HR by pulse was 68.3 (10.6) bpm, and by electrocardiogram was 67.2 (11.4) bpm. Overall, 44.0% had HR≥70 bpm. Beta-blockers were used in 75.1% of patients and another 14.4% had intolerance or contraindications to beta-blocker therapy. Among 24,910 patients on beta-blockers, 41.1% had HR≥70 bpm. HR≥70 bpm was independently associated with higher prevalence and severity of angina, more frequent evidence of myocardial ischemia, and lack of use of HR-lowering agents.</p> <p><b>Conclusions:</b> Despite a high rate of use of beta-blockers, stable CAD patients often have resting HR≥70 bpm, which was associated with an overall worse health status, more frequent angina and ischemia. Further HR lowering is possible in many patients with CAD. Whether it will improve symptoms and outcomes is being tested.</p&gt

    Quantitative analysis of cell composition and purity of human pancreatic islet preparations

    Get PDF
    Author Manuscript 2011 May 1.Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light microscopy (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed an accurate identification and quantification of cell types with measured cell number fractions (mean±s.e.m.) of 35.6±2.1% β-cells, 12.6±1.0% non-β-islet cells (48.3±2.6% total islet cells), 22.7±1.5% duct cells, and 25.3±1.8% acinar cells. Of the islet cells, 73.6±1.7% were β-cells. For comparison with the literature, estimates of cell number fraction, cell volume, and extracellular volume were combined to convert number fraction data to volume fractions applicable to cells, islets, and the entire preparation. The mathematical framework for this conversion was developed. By volume, β-cells were 86.5±1.1% of the total islet cell volume and 61.2±0.8% of intact islets (including the extracellular volume), which is similar to that of islets in the pancreas. Our estimates produced 1560±20 cells in an islet equivalent (volume of 150-μm diameter sphere), of which 1140±15 were β-cells. To test whether LM analysis of the same tissue samples could provide reasonable estimates of purity of the islet preparations, volume fraction of the islet tissue was measured on thin sections available from 27 of the clinical preparations by point counting morphometrics. Islet purity (islet volume fraction) of individual preparations determined by LM and EM analyses correlated linearly with excellent agreement (R[superscript 2]=0.95). However, islet purity by conventional dithizone staining was substantially higher with a 20–30% overestimation. Thus, both EM and LM provide accurate methods to determine the cell composition of human islet preparations and can help us understand many of the discrepancies of islet composition in the literature.National Institutes of Health (U.S.) (Grant RO1-DK063108)National Institutes of Health (U.S.) (Grant NCRR ICR U4Z RR 16606)Joslin Diabetes and Endocrinology Research Center (Grant DK36836)Diabetes Research & Wellness FoundationJuvenile Diabetes Research Foundation International (Islet Transplantation, Harvard Medical School

    FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media.</p> <p>Methods</p> <p>Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration.</p> <p>Results</p> <p>Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 <it>μ</it>m diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations.</p> <p>Conclusion</p> <p>Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet and can lead to considerable cell death (necrosis), especially in the core region of larger islets. Such models are of considerable interest to improve the function and viability of cultured, transplanted, or encapsulated islets. The present implementation allows convenient extension to true multiphysics applications that solve coupled physics phenomena such as diffusion and consumption with convection due to flowing or moving media.</p

    ZIP8 Zinc Transporter: Indispensable Role for Both Multiple-Organ Organogenesis and Hematopoiesis In Utero

    Get PDF
    Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn2+/(HCO3–)2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects–proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis

    Italian Association of Clinical Endocrinologists (AME) position statement: a stepwise clinical approach to the diagnosis of gastroenteropancreatic neuroendocrine neoplasms

    Get PDF

    How nutrition and the maternal microbiota shape the neonatal immune system.

    Get PDF
    The mucosal surfaces of mammals are densely colonized with microorganisms that are commonly referred to as the commensal microbiota. It is believed that the fetus in utero is sterile and that colonization with microorganisms starts only after birth. Nevertheless, the unborn fetus is exposed to a multitude of metabolites that originate from the commensal microbiota of the mother that reach systemic sites of the maternal body. The intestinal microbiota is strongly personalized and influenced by environmental factors, including nutrition. Members of the maternal microbiota can metabolize dietary components, pharmaceuticals and toxins, which can subsequently be passed to the developing fetus or the breast-feeding neonate. In this Review, we discuss the complex interplay between nutrition, the maternal microbiota and ingested chemicals, and summarize their effects on immunity in the offspring
    corecore