61 research outputs found
TAT-Mediated Transduction of MafA Protein In Utero Results in Enhanced Pancreatic Insulin Expression and Changes in Islet Morphology
Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero
2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease
The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011
Natural Killer Cells as Key Mediators in Type I Diabetes Immunopathology
The immunopathology of type I diabetes (T1D) presents a complicated case in part because of the multifactorial origin of this disease. Typically, T1D is thought to occur as a result of autoimmunity toward islets of Langerhans, resulting in the destruction of insulin-producing cells (β cells) and thus lifelong reliance on exogenous insulin. However, that explanation obscures much of the underlying mechanism, and the actual precipitating events along with the associated actors (latent viral infection, diverse immune cell types and their roles) are not completely understood. Notably, there is a malfunctioning in the regulation of cytotoxic CD8+ T cells that target endocrine cells through antigen-mediated attack. Further examination has revealed the likelihood of an imbalance in distinct subpopulations of tolerogenic and cytotoxic natural killer (NK) cells that may be the catalyst of adaptive immune system malfunction. The contributions of components outside the immune system, including environmental factors such as chronic viral infection also need more consideration, and much of the recent literature investigating the origins of this disease have focused on these factors. In this review, the details of the immunopathology of T1D regarding NK cell disfunction is discussed, along with how those mechanisms stand within the context of general autoimmune disorders. Finally, the rarer cases of latent autoimmune, COVID-19 (viral), and immune checkpoint inhibitor (ICI) induced diabetes are discussed as their exceptional pathology offers insight into the evolution of the disease as a whole
The Folate Cycle As a Cause of Natural Killer Cell Dysfunction and Viral Etiology in Type 1 Diabetes
The folate pathway is critical to proper cellular function and metabolism. It is responsible for multiple functions, including energy (ATP) production, methylation reactions for DNA and protein synthesis and the production of immunomodulatory molecules, inosine and adenosine. These play an important role in immune signaling and cytotoxicity. Herein, we hypothesize that defects in the folate pathway in genetically susceptible individuals could lead to immune dysfunction, permissive environments for chronic cyclical latent/lytic viral infection, and, ultimately, the development of unchecked autoimmune responses to infected tissue, in this case islet beta cells. In the context of type 1 diabetes (T1D), there has been a recent increase in newly diagnosed cases of T1D in the past 20 years that has exceeded previous epidemiological predictions with yet unidentified factor(s). This speaks to a potential environmental trigger that adversely affects immune responses. Most research into the immune dysfunction of T1D has focused on downstream adaptive responses of T and B cells neglecting the role of the upstream innate players such as natural killer (NK) cells. Constantly, surveilling the blood and tissues for pathogens, NK cells remove threats through direct cytotoxic responses and recruitment of adaptive responses using cytokines, such as IL-1β and IFN-γ. One long-standing hypothesis suggests viral infection as a potential trigger for the autoimmune response in T1D. Recent data suggest multiple viruses as potential causal agents. Intertwined with this is an observed reduced NK cell enumeration, cytotoxicity, and cytokine signaling in T1D patients. Many of the viruses implicated in T1D are chronic latent/lysogenic infections with demonstrated capacity to reduce NK cell response and number through mechanisms that resemble those of pregnancy tolerance. Defects in the folate pathway in T1D patients could result in decreased immune response to viral infection or viral reactivation. Dampened NK responses to infections result in improper signaling, improper antigen presentation, and amplified CD8+ lymphocyte proliferation and cytotoxicity, a hallmark of beta cell infiltrates in patients with T1D onset. This would suggest a critical role for NK cells in T1D development linked to viral infection and the importance of the folate pathway in maintaining proper NK response
Recommended from our members
Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions
Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions
Covalent stabilization of alginate hydrogel beads via Staudinger ligation: assessment of poly(ethylene glycol) and alginate cross-linkers
Cellular encapsulation within alginate hydrogel capsules has broad applications in tissue engineering. In seeking to improve the inherent instability of ionically cross-linked alginate hydrogels, we previously demonstrated the covalent stabilization of Ba(2+) cross-linked alginate-azide beads via chemoselective Staudinger ligation using a 1-methyl-2-diphenylphosphino-terephthalate (MDT) terminated poly(ethylene glycol) (PEG) linker. In this study, we functionalized variant PEG, linear and branched, and alginate polymers with MDT groups to evaluate the effect of size, structural design, number of functional groups, and charge on the resulting hydrogel bead. All cross-linkers resulted in enhanced covalent stabilization of alginate beads, with significant decreases in swelling and resistance to dissolution via Ba(2+) chelation. The MDT-functionalized alginate resulted in the most stable and homogeneous bead, with the most restrictive permeability even after EDTA exposure. Co-encapsulation of MIN6 cells within the cross-linked alginate hydrogel beads resulted in minimal effects on viability, whereas the degree of proliferation following culture varied with cross-linker type. Altogether, the results illustrate that manipulating the cross-linker structural design permits flexibility in resulting alginate beads characteristics. Covalent stabilization of alginate hydrogel beads with these chemoselective alginate and PEG-based cross-linkers provides a unique platform for cellular encapsulation
Recommended from our members
Oxygen: a master regulator of pancreatic development?
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen-sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)-mediated activation of Notch and repression of Wnt/beta-catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF-mediated support for Notch signalling may decline while the beta-catenin-directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation
- …