18 research outputs found

    Feasibility Study of Noninvasive Tumor Treatment with Focused Ultrasound

    Get PDF
    Abstract This paper describes the design, construction, and evaluation of a three-dimensional (3D) ultrasound system to be used for tumor treatment using high-intensity focused ultrasound (HIFU). The system consists of two parts: an ultrasonic therapy part and a treatment planning part. The ultrasonic therapy part consists of an ultrasound bowl-shaped transducer made from lead zirconate titanate (PZT) and with a resonance frequency of 0.5 MHz. Electrical LC matching circuit built for maximum electrical power delivery to the transducer, a function generator, and a power amplifier. The ultrasonic therapy part is designed for generating a focus with high acoustical powers. The treatment planning part consists of three stepper motors (responsible for moving the setup in the x-y-and z-directions), three high-voltage high-current Darlington arrays (to supply the stepper motors with the required voltages and currents), and C# software to perform the treatment planning. To assess the movement of the treatment planner, each of the three stepper motors was moved forward and backward from end to end. Then the treatment planner was successfully driven to cover cubes of dimensions of 1 × 1 × 1 cm 3 , 2 × 2 × 2 cm 3 , 4 × 4 × 4 cm 3 , and 8 × 8 × 8 cm 3 , with step sizes 0.5 mm, 1 mm, 2 mm, and 4 mm, respectively. Ex vivo experiments were performed and indicated the capability of the system to generate lesions both on-and off-axis. Three different lesions, one on-axis and two off-axis, were successfully generated

    A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules

    Get PDF
    © The Author(s) 2018. A novel framework for the classification of lung nodules using computed tomography scans is proposed in this article. To get an accurate diagnosis of the detected lung nodules, the proposed framework integrates the following 2 groups of features: (1) appearance features modeled using the higher order Markov Gibbs random field model that has the ability to describe the spatial inhomogeneities inside the lung nodule and (2) geometric features that describe the shape geometry of the lung nodules. The novelty of this article is to accurately model the appearance of the detected lung nodules using a new developed seventh-order Markov Gibbs random field model that has the ability to model the existing spatial inhomogeneities for both small and large detected lung nodules, in addition to the integration with the extracted geometric features. Finally, a deep autoencoder classifier is fed by the above 2 feature groups to distinguish between the malignant and benign nodules. To evaluate the proposed framework, we used the publicly available data from the Lung Image Database Consortium. We used a total of 727 nodules that were collected from 467 patients. The proposed system demonstrates the promise to be a valuable tool for the detection of lung cancer evidenced by achieving a nodule classification accuracy of 91.20%

    Non-Contact Spirometry Using a Mobile Thermal Camera and AI Regression

    No full text
    Non-contact physiological measurements have been under investigation for many years, and among these measurements is non-contact spirometry, which could provide acute and chronic pulmonary disease monitoring and diagnosis. This work presents a feasibility study for non-contact spirometry measurements using a mobile thermal imaging system. Thermal images were acquired from 19 subjects for measuring the respiration rate and the volume of inhaled and exhaled air. A mobile application was built to measure the respiration rate and export the respiration signal to a personal computer. The mobile application acquired thermal video images at a rate of nine frames/second and the OpenCV library was used for localization of the area of interest (nose and mouth). Artificial intelligence regressors were used to predict the inhalation and exhalation air volume. Several regressors were tested and four of them showed excellent performance: random forest, adaptive boosting, gradient boosting, and decision trees. The latter showed the best regression results, with an R-square value of 0.9998 and a mean square error of 0.0023. The results of this study showed that non-contact spirometry based on a thermal imaging system is feasible and provides all the basic measurements that the conventional spirometers support

    Computer-aided identification of degenerative neuromuscular diseases based on gait dynamics and ensemble decision tree classifiers.

    No full text
    This study proposes a reliable computer-aided framework to identify gait fluctuations associated with a wide range of degenerative neuromuscular disease (DNDs) and health conditions. Investigated DNDs included amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Huntington's disease (HD). We further performed a statistical and classification comparison elucidating the discriminative capability of different gait signals, including vertical ground reaction force (VGRF), stride duration, stance duration, and swing duration. Feature representation of these gait signals was based on statistical amplitude quantification using the root mean square (RMS), variance, kurtosis, and skewness metrics. We investigated various decision tree (DT) based ensemble methods such as bagging, adaptive boosting (AdaBoost), random under-sampling boosting (RUSBoost), and random subspace to tackle the challenge of multi-class classification. Experimental results showed that AdaBoost ensembling provided a 6.49%, 0.78%, 2.31%, and 2.72% prediction rate improvement for the VGRF, stride, stance, and swing signals, respectively. The proposed approach achieved the highest classification accuracy of 99.17%, sensitivity of 98.23%, and specificity of 99.43%, using the VGRF-based features and the adaptive boosting classification model. This work demonstrates the effective capability of using simple gait fluctuation analysis and machine learning approaches to detect DNDs. Computer-aided analysis of gait fluctuations provides a promising advent to enhance clinical diagnosis of DNDs

    Using deep transfer learning to detect scoliosis and spondylolisthesis from x-ray images.

    No full text
    Recent years have witnessed wider prevalence of vertebral column pathologies due to lifestyle changes, sedentary behaviors, or injuries. Spondylolisthesis and scoliosis are two of the most common ailments with an incidence of 5% and 3% in the United States population, respectively. Both of these abnormalities can affect children at a young age and, if left untreated, can progress into severe pain. Moreover, severe scoliosis can even lead to lung and heart problems. Thus, early diagnosis can make it easier to apply remedies/interventions and prevent further disease progression. Current diagnosis methods are based on visual inspection by physicians of radiographs and/or calculation of certain angles (e.g., Cobb angle). Traditional artificial intelligence-based diagnosis systems utilized these parameters to perform automated classification, which enabled fast and easy diagnosis supporting tools. However, they still require the specialists to perform error-prone tedious measurements. To this end, automated measurement tools were proposed based on processing techniques of X-ray images. In this paper, we utilize advances in deep transfer learning to diagnose spondylolisthesis and scoliosis from X-ray images without the need for any measurements. We collected raw data from real X-ray images of 338 subjects (i.e., 188 scoliosis, 79 spondylolisthesis, and 71 healthy). Deep transfer learning models were developed to perform three-class classification as well as pair-wise binary classifications among the three classes. The highest mean accuracy and maximum accuracy for three-class classification was 96.73% and 98.02%, respectively. Regarding pair-wise binary classification, high accuracy values were achieved for most of the models (i.e., > 98%). These results and other performance metrics reflect a robust ability to diagnose the subjects' vertebral column disorders from standard X-ray images. The current study provides a supporting tool that can reasonably help the physicians make the correct early diagnosis with less effort and errors, and reduce the need for surgical interventions

    Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks

    No full text
    The COVID-19 global pandemic has wreaked havoc on every aspect of our lives. More specifically, healthcare systems were greatly stretched to their limits and beyond. Advances in artificial intelligence have enabled the implementation of sophisticated applications that can meet clinical accuracy requirements. In this study, customized and pre-trained deep learning models based on convolutional neural networks were used to detect pneumonia caused by COVID-19 respiratory complications. Chest X-ray images from 368 confirmed COVID-19 patients were collected locally. In addition, data from three publicly available datasets were used. The performance was evaluated in four ways. First, the public dataset was used for training and testing. Second, data from the local and public sources were combined and used to train and test the models. Third, the public dataset was used to train the model and the local data were used for testing only. This approach adds greater credibility to the detection models and tests their ability to generalize to new data without overfitting the model to specific samples. Fourth, the combined data were used for training and the local dataset was used for testing. The results show a high detection accuracy of 98.7% with the combined dataset, and most models handled new data with an insignificant drop in accuracy
    corecore