30 research outputs found
Effects of marker type and filtering criteria on QST-FST comparisons
Comparative studies of quantitative and neutral genetic differentiation (QST-FST tests) provide means to detect adaptive population differentiation. However, QST-FST tests can be overly liberal if the markers used deflate FST below its expectation, or overly conservative if methodological biases lead to inflated FST estimates. We investigated how marker type and filtering criteria for marker selection influence QST-FST comparisons through their effects on FST using simulations and empirical data on over 18 000 in silico genotyped microsatellites and 3.8 million single-locus polymorphism (SNP) loci from four populations of nine-spined sticklebacks (Pungitius pungitius). Empirical and simulated data revealed that FST decreased with increasing marker variability, and was generally higher with SNPs than with microsatellites. The estimated baseline FST levels were also sensitive to filtering criteria for SNPs: both minor alleles and linkage disequilibrium (LD) pruning influenced FST estimation, as did marker ascertainment. However, in the case of stickleback data used here where QST is high, the choice of marker type, their genomic location, ascertainment and filtering made little difference to outcomes of QST-FST tests. Nevertheless, we recommend that QST-FST tests using microsatellites should discard the most variable loci, and those using SNPs should pay attention to marker ascertainment and properly account for LD before filtering SNPs. This may be especially important when level of quantitative trait differentiation is low and levels of neutral differentiation high. © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.Peer reviewe
Population structure, connectivity, and demographic history of an apex marine predator, the bull shark <i>Carcharhinus leucas</i>
Knowledge of population structure, connectivity, and effective population size remains limited for many marine apex predators, including the bull shark Carcharhinus leucas. This largeâbodied coastal shark is distributed worldwide in warm temperate and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, the bull shark likely plays a vital ecological role within marine food webs, but is at risk due to inshore habitat degradation and various fishing pressures. We investigated the bull shark\u27s global population structure and demographic history by analyzing the genetic diversity of 370 individuals from 11 different locations using 25 microsatellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers revealed clustering between sharks from the Western Atlantic and those from the Western Pacific and the Western Indian Ocean, with no contemporary gene flow. Microsatellite data suggested low differentiation between the Western Indian Ocean and the Western Pacific, but substantial differentiation was found using mitochondrial DNA. Integrating information from both types of markers and using Bayesian computation with a random forest procedure (ABCâRF), this discordance was found to be due to a complete lack of contemporary gene flow. High genetic connectivity was found both within the Western Indian Ocean and within the Western Pacific. In conclusion, these results suggest important structuring of bull shark populations globally with important gene flow occurring along coastlines, highlighting the need for management and conservation plans on regional scales rather than oceanic basin scale
Genetic signatures of variation in population size in a native fungal pathogen after the recent intensive plantation of its host tree
Historical fluctuations in forestsâ distribution driven by past climate changes and anthropogenic activities can have large impacts on the demographic history of pathogens that have a long co-evolution history with these host trees. Using a population genetic approach, we investigated that hypothesis by reconstructing the demographic history of Armillaria ostoyae, one of the major pathogens of the maritime pine (Pinus pinaster), in the largest monospecific pine planted forest in Europe (south-western France). Genetic structure analyses and approximate Bayesian computation approaches revealed that a single pathogen population underwent a severe reduction in effective size (12 times lower) 1080â2080 generations ago, followed by an expansion (4 times higher) during the last 4 generations. These results are consistent with the history of the maritime pine forest in the region characterized by a strong recession during the last glaciation (~19â000 years ago) and massive plantations during the second half of the nineteenth century. Results suggest that recent and intensive plantations of a host tree population have offered the opportunity for a rapid spread and adaptation of their pathogens
Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data
First described from western Kansas, USA, the western corn rootworm, Diabrotica virgifera virgifera, is one of the worst pests of maize. The species is generally thought to be of Mexican origin and to have incidentally followed the expansion of maize cultivation into North America thousands of years ago. However, this hypothesis has never been investigated formally. In this study, the genetic variability of samples collected throughout North America was analysed at 13 microsatellite marker loci to explore precisely the population genetic structure and colonization history of D. v. virgifera. In particular, we used up-to-date approximate Bayesian computation methods based on random forest algorithms to test a Mexican versus a central-USA origin of the species, and to compare various possible timings of colonization. This analysis provided strong evidence that the origin of D. v. virgifera was southern (Mexico, or even further south). Surprisingly, we also found that the expansion of the species north of its origin was recentâprobably not before 1100 years agoâthus indicating it was not directly associated with the early history of maize expansion out of Mexico, a far more ancient event
Distribution modelling of an introduced species: do adaptive genetic markers affect potential range?
Age-dependent genetic architecture across ontogeny of body size in sticklebacks
Abstract
Heritable variation in traits under natural selection is a prerequisite for evolutionary response. While it is recognized that trait heritability may vary spatially and temporally depending on which environmental conditions traits are expressed under, less is known about the possibility that genetic variance contributing to the expected selection response in a given trait may vary at different stages of ontogeny. Specifically, whether different loci underlie the expression of a trait throughout development and thus providing an additional source of variation for selection to act on in the wild, is unclear. Here we show that body size, an important life-history trait, is heritable throughout ontogeny in the nine-spined stickleback (Pungitius pungitius). Nevertheless, both analyses of quantitative trait loci and genetic correlations across ages show that different chromosomes/loci contribute to this heritability in different ontogenic time-points. This suggests that body size can respond to selection at different stages of ontogeny but that this response is determined by different loci at different points of development. Hence, our study provides important results regarding our understanding of the genetics of ontogeny and opens an interesting avenue of research for studying age-specific genetic architecture as a source of non-parallel evolution
Artificial selection for nonreproductive host killing in a native parasitoid on the invasive pest, Drosophila suzukii
Abstract Establishment and spread of invasive species can be facilitated by lack of natural enemies in the invaded area. Hostârange evolution of natural enemies augments their ability to reduce the impact of the invader and could enhance their value for biological control. We assessed the potential of the Drosophila parasitoid, Leptopilina heterotoma (Hymenoptera: Figitidae), to exploit the invasive pest Drosophila suzukii by focusing on three performance indices: (i) attack rate; (ii) host killing, consisting of killing rate and lethal attack rate (killing efficiency); and (iii) successful offspring development (reproductive success). We found significant intraspecific variation in attack rate and killing rate and lethal attack rate among seven European populations, but offspring generally failed to successfully develop from the D. suzukii host. We crossed these European lines to create a genetically variable source population and performed a halfâsib analysis to quantify genetic variation. Using a Bayesian animal model, we found that attack rate and killing rate had a heritability of h2=0.2, lethal attack rate h2=0.4, and offspring development h2=0. We then artificially selected wasps with the highest killing rate of D. suzukii for seven generations to test whether hostâkilling could be improved. There was a small and inconsistent response to selection in the three selection lines. Realized heritability (hr2) after four generations of selection was 0.17 but near zero after seven generations of selection. The genetic response might have been masked by an increased D. suzukii fitness resulting from adaptation to laboratory conditions. Our study reveals that native, European, L. heterotoma can attack the invasive pest, D. suzukii and significantly reduce fly survival and that different steps of the parasitization process need to be considered in the evolution of hostârange. It highlights how evolutionary principles can be applied to optimize performance of native species for biological control