1,784 research outputs found

    Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks

    Full text link
    We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.Comment: 4 pages, 4 figures http://www.quantware.ups-tlse.fr

    New Family of Solvable 1D Heisenberg Models

    Full text link
    Starting from a Calogero--Sutherland model with hyperbolic interaction confined by an external field with Morse potential we construct a Heisenberg spin chain with exchange interaction ∝1/sinh⁡2x\propto 1/\sinh^2 x on a lattice given in terms of the zeroes of Laguerre polynomials. Varying the strength of the Morse potential the Haldane--Shastry and harmonic spin chains are reproduced. The spectrum of the models in this class is found to be that of a classical one-dimensional Ising chain with nonuniform nearest neighbour coupling in a nonuniform magnetic field which allows to study the thermodynamics in the limit of infinite chains.Comment: 8 pp, LaTeX, ITP-UH-07/9

    Breit-Wigner width for two interacting particles in one-dimensional random potential

    Full text link
    For two interacting particles (TIP) in one-dimensional random potential the dependence of the Breit-Wigner width Γ\Gamma, the local density of states and the TIP localization length on system parameters is determined analytically. The theoretical predictions for Γ\Gamma are confirmed by numerical simulations.Comment: 10 pages Latex, 4 figures included. New version with extended numerical results and discussions of earlier result

    Dispersion relations and speeds of sound in special sectors for the integrable chain with alternating spins

    Full text link
    Based on our previous analysis \cite{doerfel3} of the anisotropic integrable chain consisting of spins s=1/2s=1/2 and s=1s=1 we compare the dispersion relations for the sectors with infinite Fermi zones. Further we calculate the speeds of sound for regions close to sector borders, where the Fermi radii either vanish or diverge, and compare the results.Comment: 11 pages, LaTeX2e, uses iopart.cls,graphicx.sty and psfrag.sty, 2 figure

    Level Statistics and Localization for Two Interacting Particles in a Random Potential

    Full text link
    We consider two particles with a local interaction UU in a random potential at a scale L1L_1 (the one particle localization length). A simplified description is provided by a Gaussian matrix ensemble with a preferential basis. We define the symmetry breaking parameter Ό∝U−2\mu \propto U^{-2} associated to the statistical invariance under change of basis. We show that the Wigner-Dyson rigidity of the energy levels is maintained up to an energy EÎŒE_{\mu}. We find that EΌ∝1/ÎŒE_{\mu} \propto 1/\sqrt{\mu} when Γ\Gamma (the inverse lifetime of the states of the preferential basis) is smaller than Δ2\Delta_2 (the level spacing), and EΌ∝1/ÎŒE_{\mu} \propto 1/\mu when Γ>Δ2\Gamma > \Delta_2. This implies that the two-particle localization length L2L_2 first increases as ∣U∣|U| before eventually behaving as U2U^2.Comment: 4 pages REVTEX, 4 Figures EPS, UUENCODE

    h/2eh/2e--Oscillations for Correlated Electron Pairs in Disordered Mesoscopic Rings

    Full text link
    The full spectrum of two interacting electrons in a disordered mesoscopic one--dimensional ring threaded by a magnetic flux is calculated numerically. For ring sizes far exceeding the one--particle localization length L1L_1 we find several h/2eh/2e--periodic states whose eigenfunctions exhibit a pairing effect. This represents the first direct observation of interaction--assisted coherent pair propagation, the pair being delocalized on the scale of the whole ring.Comment: 4 pages, uuencoded PostScript, containing 5 figures

    Emergence of Quantum Ergodicity in Rough Billiards

    Full text link
    By analytical mapping of the eigenvalue problem in rough billiards on to a band random matrix model a new regime of Wigner ergodicity is found. There the eigenstates are extended over the whole energy surface but have a strongly peaked structure. The results of numerical simulations and implications for level statistics are also discussed.Comment: revtex, 4 pages, 4 figure

    Properties of the chiral spin liquid state in generalized spin ladders

    Full text link
    We study zero temperature properties of a system of two coupled quantum spin chains subject to fields explicitly breaking time reversal symmetry and parity. Suitable choice of the strength of these fields gives a model soluble by Bethe Ansatz methods which allows to determine the complete magnetic phase diagram of the system and the asymptotics of correlation functions from the finite size spectrum. The chiral properties of the system for both the integrable and the nonintegrable case are studied using numerical techniques.Comment: 19 pages, 9eps figures, Late

    Effective σ\sigma Model Formulation for Two Interacting Electrons in a Disordered Metal

    Full text link
    We derive an analytical theory for two interacting electrons in a dd--dimensional random potential. Our treatment is based on an effective random matrix Hamiltonian. After mapping the problem on a nonlinear σ\sigma model, we exploit similarities with the theory of disordered metals to identify a scaling parameter, investigate the level correlation function, and study the transport properties of the system. In agreement with recent numerical work we find that pair propagation is subdiffusive and that the pair size grows logarithmically with time.Comment: 4 pages, revtex, no figure
    • 

    corecore