40 research outputs found

    Compressing the Backward Pass of Large-Scale Neural Architectures by Structured Activation Pruning

    Full text link
    The rise of Deep Neural Networks (DNNs) has led to an increase in model size and complexity, straining the memory capacity of GPUs. Sparsity in DNNs, characterized as structural or ephemeral, has gained attention as a solution. This work focuses on ephemeral sparsity, aiming to reduce memory consumption during training. It emphasizes the significance of activations, an often overlooked component, and their role in memory usage. This work employs structured pruning in Block Sparse Compressed Row (BSR) format in combination with a magnitude-based criterion to efficiently prune activations. We furthermore introduce efficient block-sparse operators for GPUs and showcase their effectiveness, as well as the superior compression offered by block sparsity. We report the effectiveness of activation pruning by evaluating training speed, accuracy, and memory usage of large-scale neural architectures on the example of ResMLP on image classification tasks. As a result, we observe a memory reduction of up to 32% while maintaining accuracy. Ultimately, our approach aims to democratize large-scale model training, reduce GPU requirements, and address ecological concerns.Comment: 8 pages, 11 figures, submitted to the 6th AccML workshop at HiPEAC conference 202

    On the Non-Associativity of Analog Computations

    Full text link
    The energy efficiency of analog forms of computing makes it one of the most promising candidates to deploy resource-hungry machine learning tasks on resource-constrained system such as mobile or embedded devices. However, it is well known that for analog computations the safety net of discretization is missing, thus all analog computations are exposed to a variety of imperfections of corresponding implementations. Examples include non-linearities, saturation effect and various forms of noise. In this work, we observe that the ordering of input operands of an analog operation also has an impact on the output result, which essentially makes analog computations non-associative, even though the underlying operation might be mathematically associative. We conduct a simple test by creating a model of a real analog processor which captures such ordering effects. With this model we assess the importance of ordering by comparing the test accuracy of a neural network for keyword spotting, which is trained based either on an ordered model, on a non-ordered variant, and on real hardware. The results prove the existence of ordering effects as well as their high impact, as neglecting ordering results in substantial accuracy drops.Comment: Published at the ECML PKDD Conference 2023, at the 4th Workshop on IoT, Edge, and Mobile for Embedded Machine Learnin

    Implications of Noise in Resistive Memory on Deep Neural Networks for Image Classification

    Full text link
    Resistive memory is a promising alternative to SRAM, but is also an inherently unstable device that requires substantial effort to ensure correct read and write operations. To avoid the associated costs in terms of area, time and energy, the present work is concerned with exploring how much noise in memory operations can be tolerated by image classification tasks based on neural networks. We introduce a special noisy operator that mimics the noise in an exemplary resistive memory unit, explore the resilience of convolutional neural networks on the CIFAR-10 classification task, and discuss a couple of countermeasures to improve this resilience

    Reducing Memory Requirements for the IPU using Butterfly Factorizations

    Full text link
    High Performance Computing (HPC) benefits from different improvements during last decades, specially in terms of hardware platforms to provide more processing power while maintaining the power consumption at a reasonable level. The Intelligence Processing Unit (IPU) is a new type of massively parallel processor, designed to speedup parallel computations with huge number of processing cores and on-chip memory components connected with high-speed fabrics. IPUs mainly target machine learning applications, however, due to the architectural differences between GPUs and IPUs, especially significantly less memory capacity on an IPU, methods for reducing model size by sparsification have to be considered. Butterfly factorizations are well-known replacements for fully-connected and convolutional layers. In this paper, we examine how butterfly structures can be implemented on an IPU and study their behavior and performance compared to a GPU. Experimental results indicate that these methods can provide 98.5% compression ratio to decrease the immense need for memory, the IPU implementation can benefit from 1.3x and 1.6x performance improvement for butterfly and pixelated butterfly, respectively. We also reach to 1.62x training time speedup on a real-word dataset such as CIFAR10

    GraphMatch: Subgraph Query Processing on FPGAs

    Full text link
    Efficiently finding subgraph embeddings in large graphs is crucial for many application areas like biology and social network analysis. Set intersections are the predominant and most challenging aspect of current join-based subgraph query processing systems for CPUs. Previous work has shown the viability of utilizing FPGAs for acceleration of graph and join processing. In this work, we propose GraphMatch, the first genearl-purpose stand-alone subgraph query processing accelerator based on worst-case optimal joins (WCOJ) that is fully designed for modern, field programmable gate array (FPGA) hardware. For efficient processing of various graph data sets and query graph patterns, it leverages a novel set intersection approach, called AllCompare, tailor-made for FPGAs. We show that this set intersection approach efficiently solves multi-set intersections in subgraph query processing, superior to CPU-based approaches. Overall, GraphMatch achieves a speedup of over 2.68x and 5.16x, compared to the state-of-the-art systems GraphFlow and RapidMatch, respectively

    Analyzing Communication Models for Distributed Thread-Collaborative Processors in Terms of Energy and Time

    Get PDF
    Abstract-Accelerated computing has become pervasive for increasing the computational power and energy efficiency in terms of GFLOPs/Watt. For application areas with highest demands, for instance high performance computing, data warehousing and high performance analytics, accelerators like GPUs or Intel's MICs are distributed throughout the cluster. Since current analyses and predictions show that data movement will be the main contributor to energy consumption, we are entering an era of communication-centric heterogeneous systems that are operating with hard power constraints. In this work, we analyze data movement optimizations for distributed heterogeneous systems based on CPUs and GPUs. Thread-collaborative processors like GPUs differ significantly in their execution model from generalpurpose processors like CPUs, but available communication models are still designed and optimized for CPUs. Similar to heterogeneity in processing, heterogeneity in communication can have a huge impact on energy and time. To analyze this impact, we use multiple workloads with distinct properties regarding computational intensity and communication characteristics. We show for which workloads tailored communication models are essential, not only reducing execution time but also saving energy. Exposing the impact in terms of energy and time for communication-centric heterogeneous systems is crucial for future optimizations, and this work is a first step in this direction

    A HT3 Platform for Rapid Prototyping and High Performance Reconfigurable Computing

    Get PDF
    FPGAs as reconfigurable devices play an important role in both rapid prototyping and high performance reconfigurable computing. Usually, FPGA vendors help the users with pre-designed cores, for instance for various communication protocols. However, this is only true for widely used protocols. In the use case described here, the target application may benefit from a tight integration of the FPGA in a computing system. Typical commodity protocols like PCI Express may not fulfill these demands. HyperTransport (HT), on the other hand, allows connecting directly and without intermediate bridges or protocol conversion to a processor interface. As a result, communication costs between the FPGA unit and both processor and main memory are minimal. In this paper we present an HT3 interface for Stratix IV based FPGAs, which allows for minimal latencies and high bandwidths between processor and device and main memory and device. Designs targeting a HT connection can now be prototyped in real world systems. Furthermore, this design can be leveraged for acceleration tasks, with the minimal communication costs allowing fine-grain work deployment and the use of cost-efficient main memory instead of size-limited and costly on-device memory
    corecore