27 research outputs found

    Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements

    Get PDF
    3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings

    Effects of an Impulse Frequency Dependent 10-Week Whole-body Electromyostimulation Training Program on Specific Sport Performance Parameters

    Get PDF
    The difference in the efficacy of altered stimulation parameters in whole-body-electromyostimulation (WB-EMS) training remains largely unexplored. However, higher impulse frequencies (>50 Hz) might be most adequate for strength gain. The aim of this study was to analyze potential differences in sports-related performance parameters after a 10-week WB-EMS training with different frequencies. A total of 51 untrained participants (24.9 ± 3.9 years, 174 ± 9 cm, 72.4 ± 16.4 kg, BMI 23.8 ± 4.1, body fat 24.7 ± 8.1 %) was randomly divided into three groups: one inactive control group (CON) and two training groups. They completed a 10-week WB-EMS program of 1.5 sessions/week, equal content but different stimulation frequencies (training with 20 Hz (T20) vs. training with 85 Hz (T85)). Before and after intervention, all participants completed jumping (Counter Movement Jump (CMJ), Squat Jump (SJ), Drop Jump (DJ)), sprinting (5m, 10m, 30m), and strength tests (isometric trunk flexion/extension). One-way ANOVA was applied to calculate parameter changes. Post-hoc least significant difference tests were performed to identify group differences. Significant differences were identified for CMJ (p = 0.007), SJ (p = 0.022), trunk flexion (p = 0.020) and extension (p=.013) with significant group differences between both training groups and CON (not between the two training groups T20 and T85). A 10-week WB-EMS training leads to significant improvements of jump and strength parameters in untrained participants. No differences could be detected between the frequencies. Therefore, both stimulation frequencies can be regarded as adequate for increasing specific sport performance parameters. Further aspects as regeneration or long term effects by the use of different frequencies still need to be clarified

    A Syrup-Water Mixture Increases Performance in the Yo-Yo Intermittent Recovery Test after a Soccer-Specific Preload in the Hoff Test: A Double-Blind Crossover Study

    Get PDF
    Background: The positive effect of carbohydrates from commercial beverages on soccer-specific exercise has been clearly demonstrated. However, no study is available that uses a home-mixed beverage in a test where technical skills were required. Methods: Nine subjects participated vol-untarily in this double-blind, randomized, placebo-controlled crossover study. On three testing days, the subjects performed six Hoff tests with a 3-min active break as a preload and then the Yo-Yo Intermittent Running Test Level 1 (Yo-Yo IR1) until exhaustion. On test days 2 and 3, the subjects received either a 69 g carbohydrate-containing drink (syrup–water mixture) or a carbo-hydrate-free drink (aromatic water). Beverages were given in several doses of 250 mL each: 30 min before and immediately before the exercise and after 18 and 39 min of exercise. The primary target parameters were the running performance in the Hoff test and Yo-Yo IR1, body mass and heart rate. Statistical differences between the variables of both conditions were analyzed using paired samples t-tests. Results: The maximum heart rate in Yo-Yo IR1 showed significant differ-ences (syrup: 191.1 ± 6.2 bpm; placebo: 188.0 ± 6.89 bpm; t(6) = −2.556; p = 0.043; dz = 0.97). The running performance in Yo-Yo IR1 under the condition syrup significantly increased by 93.33 ± 84.85 m (0–240 m) on average (p = 0.011). Conclusions: The intake of a syrup–water mixture with a total of 69 g carbohydrates leads to an increase in high-intensive running performance after soccer specific loads. Therefore, the intake of carbohydrate solutions is recommended for intermit-tent loads and should be increasingly considered by coaches and players

    A Syrup-Water Mixture Increases Performance in the Yo-Yo Intermittent Recovery Test after a Soccer-Specific Preload in the Hoff Test: A Double-Blind Crossover Study

    No full text
    Background: The positive effect of carbohydrates from commercial beverages on soccer-specific exercise has been clearly demonstrated. However, no study is available that uses a home-mixed beverage in a test where technical skills were required. Methods: Nine subjects participated vol-untarily in this double-blind, randomized, placebo-controlled crossover study. On three testing days, the subjects performed six Hoff tests with a 3-min active break as a preload and then the Yo-Yo Intermittent Running Test Level 1 (Yo-Yo IR1) until exhaustion. On test days 2 and 3, the subjects received either a 69 g carbohydrate-containing drink (syrup–water mixture) or a carbo-hydrate-free drink (aromatic water). Beverages were given in several doses of 250 mL each: 30 min before and immediately before the exercise and after 18 and 39 min of exercise. The primary target parameters were the running performance in the Hoff test and Yo-Yo IR1, body mass and heart rate. Statistical differences between the variables of both conditions were analyzed using paired samples t-tests. Results: The maximum heart rate in Yo-Yo IR1 showed significant differ-ences (syrup: 191.1 ± 6.2 bpm; placebo: 188.0 ± 6.89 bpm; t(6) = −2.556; p = 0.043; dz = 0.97). The running performance in Yo-Yo IR1 under the condition syrup significantly increased by 93.33 ± 84.85 m (0–240 m) on average (p = 0.011). Conclusions: The intake of a syrup–water mixture with a total of 69 g carbohydrates leads to an increase in high-intensive running performance after soccer specific loads. Therefore, the intake of carbohydrate solutions is recommended for intermit-tent loads and should be increasingly considered by coaches and players

    The Influence of Fatigued Core Muscles on Head Acceleration during Headers in Soccer

    Get PDF
    The core muscles play a central role in stabilizing the head during headers in soccer. The objective of this study was to examine the influence of a fatigued core musculature on the acceleration of the head during jump headers and run headers. Acceleration of the head was measured in a pre-post-design in 68 soccer players (age: 21.5 ± 3.8 years, height: 180.0 ± 13.9 cm, weight: 76.9 ± 8.1 kg). Data were recorded by means of a telemetric 3D acceleration sensor and with a pendulum header. The treatment encompassed two exercises each for the ventral, lateral, and dorsal muscle chains. The acceleration of the head between pre- and post-test was reduced by 0.3 G (p = 0.011) in jump headers and by 0.2 G (p = 0.067) in run headers. An additional analysis of all pretests showed an increased acceleration in run headers when compared to stand headers (p < 0.001) and jump headers (p < 0.001). No differences were found in the sub-group comparisons: semi-professional vs. recreational players, offensive vs. defensive players. Based on the results, we conclude that the acceleration of the head after fatiguing the core muscles does not increase, which stands in contrast to postulated expectations. More tests with accelerated soccer balls are required for a conclusive statement

    The Impact of Whole-Body Electromyostimulation on Body Posture and Trunk Muscle Strength in Untrained Persons

    Get PDF
    Muscular imbalances of the trunk muscles are held responsible for changes in body posture. At the same time, whole-body electromyostimulation (WB-EMS) has been established as a new training method that enables simultaneous stimulation of many muscle groups. This study was aiming to analyze if a 10 weeks WB-EMS training changes posture-relevant parameters and/or improves isometric strength of the trunk extensors and flexors, and if there are differences based on stimulation at 20 Hz and 85 Hz. Fifty eight untrained adult test persons were divided into three groups (control, CON; training with 20 Hz stimulation, TR20; training with 85 Hz, TR85). Anthropometric parameters, trunk extension and flexion forces and torques, and posture parameters were determined before (n = 58) and after (n = 53: CON: n = 15, TR20: n = 19, TR85: n = 19) a 10 weeks WB-EMS training program (15 applications, 9 exercises). Differences between the groups were calculated for pre- and post-tests using univariate ANOVA and between the test times using repeated (2 × 3) ANOVA. Comparisons of pairs were calculated post hoc based on Fisher (LSD). No differences between the groups were found for the posture parameters. The post hoc analysis of both trunk flexion and trunk extension forces and torques showed a significant difference between the groups TR85 and CON but no difference between the other group pairs. A 10 weeks whole-body electrostimulation training with a stimulation frequency of 85 Hz in contrast to training with a stimulation frequency of 20 Hz improves the trunk muscle strength of an untrained group but does not significantly change posture parameters

    Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters

    No full text
    Postural deficits such as hyperlordosis (hollow back) or hyperkyphosis (hunchback) are relevant health issues. Diagnoses depend on the experience of the examiner and are, therefore, often subjective and prone to errors. Machine learning (ML) methods in combination with explainable artificial intelligence (XAI) tools have proven useful for providing an objective, data-based orientation. However, only a few works have considered posture parameters, leaving the potential for more human-friendly XAI interpretations still untouched. Therefore, the present work proposes an objective, data-driven ML system for medical decision support that enables especially human-friendly interpretations using counterfactual explanations (CFs). The posture data for 1151 subjects were recorded by means of stereophotogrammetry. An expert-based classification of the subjects regarding the presence of hyperlordosis or hyperkyphosis was initially performed. Using a Gaussian progress classifier, the models were trained and interpreted using CFs. The label errors were flagged and re-evaluated using confident learning. Very good classification performances for both hyperlordosis and hyperkyphosis were found, whereby the re-evaluation and correction of the test labels led to a significant improvement (MPRAUC = 0.97). A statistical evaluation showed that the CFs seemed to be plausible, in general. In the context of personalized medicine, the present study’s approach could be of importance for reducing diagnostic errors and thereby improving the individual adaptation of therapeutic measures. Likewise, it could be a basis for the development of apps for preventive posture assessment

    #Sport #Gesundheit #Digital

    No full text
    In ihrem 50. JubilĂ€umsjahr lud die Technische UniversitĂ€t Kaiserslautern am 26. und 27. November 2020 zu einem Höhepunkt ein: dem Kongress #Sport #Gesundheit #Digital. FĂŒr zwei Tage wurden im Rahmen eines Online-Forums gemeinsam die Themenfelder Sport, Gesundheit und Digitalisierung diskutiert. Wir freuen uns sehr, dass die Techniker Krankenkasse die TUK als Ausrichter der Veranstaltung besonders unterstĂŒtzt hat. #SGD – Der Kongress setzte an der Schnittstelle von Sport, Gesundheit und Digitalisierung an und beleuchtete Chancen und Möglichkeiten, die durch das Zusammenspiel dieser Disziplinen entstehen können. Gleichzeitig wurden Risiken und Herausforderungen der digitalen Entwicklungen in Sport und Gesundheit betrachtet und perspektivisch mit Blick in die Zukunft analysiert. HochkarĂ€tige BeitrĂ€ge aus Wissenschaft und Praxis aus allen fĂŒr das Themenspektrum relevanten Fachrichtungen sorgten fĂŒr ein hohes Maß an Abwechslung und Transfer. Der Kongress richtete sich dabei nicht nur an Personen aus Wissenschaft und Praxis der Bereiche Gesundheitswesen und -management, Medizin und Psychologie. Ebenso angesprochen wurden Übungsleitende und Angehörige aus Hochschulsport und Sportwissenschaft, Studierende und Mitarbeitende aller bezogenen Fachrichtungen sowie alle allgemein interessierten Personen. Der vorliegende Kongressband stellt die Sammlung der Kongressinhalte dar. Neben den schriftlichen BeitrĂ€gen lassen sich hier auch Impressionen der Kongresstage und die VortrĂ€ge als interaktiv eingebundene Videos finden

    #Sport #Gesundheit #Digital

    No full text
    In ihrem 50. JubilĂ€umsjahr lud die Technische UniversitĂ€t Kaiserslautern am 26. und 27. November 2020 zu einem Höhepunkt ein: dem Kongress #Sport #Gesundheit #Digital. FĂŒr zwei Tage wurden im Rahmen eines Online-Forums gemeinsam die Themenfelder Sport, Gesundheit und Digitalisierung diskutiert. Wir freuen uns sehr, dass die Techniker Krankenkasse die TUK als Ausrichter der Veranstaltung besonders unterstĂŒtzt hat. #SGD – Der Kongress setzte an der Schnittstelle von Sport, Gesundheit und Digitalisierung an und beleuchtete Chancen und Möglichkeiten, die durch das Zusammenspiel dieser Disziplinen entstehen können. Gleichzeitig wurden Risiken und Herausforderungen der digitalen Entwicklungen in Sport und Gesundheit betrachtet und perspektivisch mit Blick in die Zukunft analysiert. HochkarĂ€tige BeitrĂ€ge aus Wissenschaft und Praxis aus allen fĂŒr das Themenspektrum relevanten Fachrichtungen sorgten fĂŒr ein hohes Maß an Abwechslung und Transfer. Der Kongress richtete sich dabei nicht nur an Personen aus Wissenschaft und Praxis der Bereiche Gesundheitswesen und -management, Medizin und Psychologie. Ebenso angesprochen wurden Übungsleitende und Angehörige aus Hochschulsport und Sportwissenschaft, Studierende und Mitarbeitende aller bezogenen Fachrichtungen sowie alle allgemein interessierten Personen. Der vorliegende Kongressband stellt die Sammlung der Kongressinhalte dar. Neben den schriftlichen BeitrĂ€gen lassen sich hier auch Impressionen der Kongresstage und die VortrĂ€ge als interaktiv eingebundene Videos finden

    Whole-body electromyostimulation in physical therapy: do gender, skinfold thickness or body composition influence maximum intensity tolerance?

    Get PDF
    Whole-body electromyostimulation (WB-EMS) is an extension of the EMS application known in physical therapy. In WB-EMS, body composition and skinfold thickness seem to play a decisive role in influencing the Ohmic resistance and therefore the maximum intensity tolerance. That is why the therapeutic success of (WB-)EMS may depend on individual anatomical parameters. The aim of the study was to find out whether gender, skinfold thickness and parameters of body composition have an influence on the maximum intensity tolerance in WB-EMS. [Participants and Methods] Fifty-two participants were included in the study. Body composition (body impedance, body fat, fat mass, fat-free mass) and skinfold thicknesses were measured and set into relation to the maximum intensity tolerance. [Results] No relationship between the different anthropometric parameters and the maximum intensity tolerance was detected for both genders. Considering the individual muscle groups, no similarities were found in the results. [Conclusion] Body composition or skinfold thickness do not seem to have any influence on the maximum intensity tolerance in WB-EMS training. For the application in physiotherapy this means that a dosage of the electrical voltage within the scope of a (WB-) EMS application is only possible via the subjective feedback (BORG Scale)
    corecore