340 research outputs found

    Ethical Adversaries: Towards Mitigating Unfairness with Adversarial Machine Learning

    Get PDF
    Machine learning is being integrated into a growing number of critical systems with far-reaching impacts on society. Unexpected behaviour and unfair decision processes are coming under increasing scrutiny due to this widespread use and its theoretical considerations. Individuals, as well as organisations, notice, test, and criticize unfair results to hold model designers and deployers accountable. We offer a framework that assists these groups in mitigating unfair representations stemming from the training datasets. Our framework relies on two inter-operating adversaries to improve fairness. First, a model is trained with the goal of preventing the guessing of protected attributes' values while limiting utility losses. This first step optimizes the model's parameters for fairness. Second, the framework leverages evasion attacks from adversarial machine learning to generate new examples that will be misclassified. These new examples are then used to retrain and improve the model in the first step. These two steps are iteratively applied until a significant improvement in fairness is obtained. We evaluated our framework on well-studied datasets in the fairness literature -- including COMPAS -- where it can surpass other approaches concerning demographic parity, equality of opportunity and also the model's utility. We also illustrate our findings on the subtle difficulties when mitigating unfairness and highlight how our framework can assist model designers.Comment: 15 pages, 3 figures, 1 tabl

    BIR: A Method for Selecting the Best Interpretable Multidimensional Scaling Rotation using External Variables

    Get PDF
    Interpreting nonlinear dimensionality reduction models using external features (or external variables) is crucial in many fields, such as psychology and ecology. Multidimensional scaling (MDS) is one of the most frequently used dimensionality reduction techniques in these fields. However, the rotation invariance of the MDS objective function may make interpretation of the resulting embedding difficult. This paper analyzes how the rotation of MDS embeddings affects sparse regression models used to interpret them and proposes a method, called the Best Interpretable Rotation (BIR) method, which selects the best MDS rotation for interpreting embeddings using external information

    Deep Learning Applied to Sign Language

    Get PDF
    corecore