67 research outputs found

    Wall slip of complex fluids: interfacial friction or slip length?

    Full text link
    Using a dynamic Surface Force Apparatus, we demonstrate that the notion of slip length used to describe the boundary flow of simple liquids, is not appropriate for viscoelastic liquids. Rather, the appropriate description lies in the original Navier's partial slip boundary condition, formulated in terms of an interfacial friction coefficient. We establish an exact analytical expression to extract the interfacial friction coefficient from oscillatory drainage forces between a sphere and a plane, suitable for dynamic SFA or Atomic Force Microscopy non-contact measurements. We use this model to investigate the boundary friction of viscoelastic polymer solutions over 5 decades of film thicknesses and one decade in frequency. The proper use of the original Navier's condition describes accurately the complex hydrodynamic force up to scales of tens of micrometers, with a simple "Newtonian-like" friction coefficient, not frequency dependent, and reflecting closely the dynamics of an interfacial depletion layer at the solution/solid interface.Comment: 7 pages, 5 figure

    Thermally Activated Dynamics of the Capillary Condensation

    Full text link
    This paper is devoted to the thermally activated dynamics of the capillary condensation. We present a simple model which enables us to identify the critical nucleus involved in the transition mechanism. This simple model is then applied to calculate the nucleation barrier from which we can obtain informations on the nucleation time. We present a simple estimation of the nucleation barrier in slab geometry both in the two dimensional case and in the three dimensional case. We extend the model in the case of rough surfaces which is closer to the experimental case and allows comparison with experimental datas.Comment: 6 pages, 3 figures, Submitted to J. Phys. : Condens. Matter, Proceedings of the IV Liquid Matter Conference - Grenada(Spain) july 199

    Measurement of the temperature decrease in evaporating soap films

    Full text link
    Recent advances have demonstrated that evaporation can play a significant role on soap film stability, which is a key concern in many industrial areas but also for children playing with bubbles. Thus, evaporation leads to a film thinning but also to a film cooling, which has been overlooked for soapy objects. Here, we study the temperature variation of an evaporating soap film for different values of relative humidity and glycerol concentrations. We evidence that the temperature of soap films can decrease after their creation up to 8 o~^\text{o}C. We propose a model describing the temperature drop of soap films after their formation that is in quantitative agreement with our experiments. We emphasize that this cooling effect is significant and must be carefully considered in future studies on the dynamics of soap films.Comment: 6 page

    Elastohydrodynamic relaxation of soft and deformable microchannels

    Full text link
    Hydrodynamic flows in compliant channels are of great interest in physiology and microfluidics. In these situations, elastohydrodynamic coupling leads to: (i) a nonlinear pressure-vs.-flow-rate relation, strongly affecting the hydraulic resistance; and (ii), because of the compliance-enabled volume storage, a finite relaxation time under a step-wise change in pressure. This latter effect remains relatively unexplored, even while the time scale can vary over a decade in typical situations. In this study we provide time-resolved measurements of the relaxation dynamics for thin and soft, rectangular microfluidic channels. We describe our data using a perturbative lubrication approximation of the Stokes equation coupled to linear elasticity, while taking into account the effect compliance and resistance of the entrance. The modelling allows to completely describe all of the experimental results. Our work is relevant for any microfluidic scenario wherein a time-dependent driving is applied and provides a first step in the dynamical description of compliant channel networks

    Generation of Giant Soap Films

    Full text link
    Artists regularly make soap bubbles several meters long. In this article we make soap films up to two meters high by pulling a horizontal fishing line driven by belts out of a soapy solution at velocities ranging from 20 cm/s to 250 cm/s. We characterize the thickness profile of the central part of the film that behaves like a rubber band under tension. We show that its thickness profile is well described by a static model in which a homogeneous elastic film is stretched by its own weight. This leads to an exponential thickness profile with a characteristic length given by a competition between gravity and surface elasticity. The prefactor is fixed by the shape and area of the film, governed by the fishing line motion but also by a continuous extraction of foam film from the lateral menisci, thicker than the central part, and that progressively invades the film from its lateral boundaries. The model we propose captures the subtle interplay between gravity, film elasticity and film extraction and leads to predictions in good agreement with our experimental data
    • …
    corecore