7 research outputs found

    The Maslov index and nondegenerate singularities of integrable systems

    Full text link
    We consider integrable Hamiltonian systems in R^{2n} with integrals of motion F = (F_1,...,F_n) in involution. Nondegenerate singularities are critical points of F where rank dF = n-1 and which have definite linear stability. The set of nondegenerate singularities is a codimension-two symplectic submanifold invariant under the flow. We show that the Maslov index of a closed curve is a sum of contributions +/- 2 from the nondegenerate singularities it is encloses, the sign depending on the local orientation and stability at the singularities. For one-freedom systems this corresponds to the well-known formula for the Poincar\'e index of a closed curve as the oriented difference between the number of elliptic and hyperbolic fixed points enclosed. We also obtain a formula for the Liapunov exponent of invariant (n-1)-dimensional tori in the nondegenerate singular set. Examples include rotationally symmetric n-freedom Hamiltonians, while an application to the periodic Toda chain is described in a companion paper.Comment: 27 pages, 1 figure; published versio

    Singularities, Lax degeneracies and Maslov indices of the periodic Toda chain

    Full text link
    The n-particle periodic Toda chain is a well known example of an integrable but nonseparable Hamiltonian system in R^{2n}. We show that Sigma_k, the k-fold singularities of the Toda chain, ie points where there exist k independent linear relations amongst the gradients of the integrals of motion, coincide with points where there are k (doubly) degenerate eigenvalues of representatives L and Lbar of the two inequivalent classes of Lax matrices (corresponding to degenerate periodic or antiperiodic solutions of the associated second-order difference equation). The singularities are shown to be nondegenerate, so that Sigma_k is a codimension-2k symplectic submanifold. Sigma_k is shown to be of elliptic type, and the frequencies of transverse oscillations under Hamiltonians which fix Sigma_k are computed in terms of spectral data of the Lax matrices. If mu(C) is the (even) Maslov index of a closed curve C in the regular component of R^{2n}, then (-1)^{\mu(C)/2} is given by the product of the holonomies (equal to +/- 1) of the even- (or odd-) indexed eigenvector bundles of L and Lmat.Comment: 25 pages; published versio

    Maslov Indices and Monodromy

    Get PDF
    We prove that for a Hamiltonian system on a cotangent bundle that is Liouville-integrable and has monodromy the vector of Maslov indices is an eigenvector of the monodromy matrix with eigenvalue 1. As a corollary the resulting restrictions on the monodromy matrix are derived.Comment: 6 page

    Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics

    No full text
    corecore