14,121 research outputs found
The Influence of Text Pre-processing on Plagiarism Detection
This paper explores the influence of text preprocessing techniques on plagiarism detection. We examine stop-word removal, lemmatization,number replacement, synonymy recognition, and word generalization. We also look into the influence of punctuation and word-order within N-grams. All these techniques are evaluated according to their impact on F1-measure and speed of execution. Our experiments were performed on a Czech corpus of plagiarized documents about politics. At the end of this paper, we propose what we consider to be the best combination of text pre-processing techniques
Regional and temporal changes in AIDS in Europe before HAART
In a prospective observational study 4485 patients from 46 clinical centres in 17 European countries were followed between April 1994 and November 1996. Information on AIDS-defining events (ADEs) were collected together with basic demographic data, treatment history and laboratory results. The centres were divided into four geographical regions (north, central, south-west and south-east) so that it was possible to identify any existing regional differences in ADEs. The regional differences that we observed included a higher risk of all forms of Mycobacterium tuberculosis infections (Tb) and wasting disease in the south-west and an increased risk of infections with the Mycobacterium avium complex (MAC) in the north. In Cox multivariable analyses, where north was used as the reference group, we observed hazard ratios of 6.87, 7.77, 2.29 and 0.16 (P < 0.05 in all cases) for pulmonary Tb, extrapulmonary Tb, wasting disease and MAC respectively in the south-west. Pneumocystis carinii pneumonia (PCP) was less commonly diagnosed in the central region (RH = 0.51, 95% CI 0.32-0.79, P = 0.003) and most common in the south-east (RH = 1.04, 95% CI 0.71-1.51, P = 0.85). Comparisons with a similar 'AIDS in Europe' study that concentrated on the early phase of the epidemic reveal that most of the regional differences that were observed in the 1980s still persist in the mid-1990s
A fully coupled fluid-particle flow solver using quadrature-based moment method with high-order realizable schemes on unstructured grids
Kinetic Equations containing terms for spatial transport, gravity, fluid drag and particle-particle collisions can be used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the problem in terms of moments of the velocity distribution function. A quadrature method of moments (QMOM) was derived by Desjardins et al. [1] for approximating solutions to the kinetic equation for arbitrary Knudsen number. Fox [2, 13] derived a third-order QMOMfor dilute particle flows, including the effect of the fluid drag on the particles. Passalacqua et al. [4] and Garg et al. [3] coupled an incompressible finite-volume solver for the fluid-phase and a third order QMOM solver for particle-phase on Cartesian grids. In the current work a compressible finite-volume fluid solver is coupled with a particle-phase solver based on third-order QMOM on unstructured grids. The fluid and particle-phase are fully coupled by accounting for the volume displacement effects induced by the presence of the particles and the momentum exchange between the phases. The success of QMOM is based on the moment inversion algorithm that allows quadrature weights and abscissas to be computed from the moments of the distribution function. The moment-inversion algorithm does not work if the moments are non-realizable, which might lead to negative weights. Desjardins et al. [1] showed that realizability is guaranteed only with the 1st-order finite-volume scheme that has excessive numerical diffusion. The authors [5, 6] have derived high-order finite-volume schemes that guarantee realizability for QMOM. These high-order realizable schemes are used in this work for the particle-phase solver. Results are presented for a dilute gas-particle flow in a lid-driven cavity with both Stokes and Knudsen numbers equal to 1. For this choice of Knudsen and Stokes numbers, particle trajectory crossing occurs which is captured by QMOM particle-phase solver
A Tale of Two [Univer]Cities: Changing Learning Environments
This paper outlines case study developments in relation to new learning environments in two universities in Hong Kong, with an emphasis on the context behind these changes, the changes involved, and the mechanisms employed for informing and guiding these changes. From past to present, the focus of learning has shifted from the search and understanding of information to the application and construction of knowledge (Brown & Long, 2006). The learner-centered paradigm of teaching and learning (e.g. Laurillard 2002 & 2009; Biggs 2003) highlights the importance of engaging students actively in both the manipulation and construction of knowledge. This leads to new interpretations of what constitutes 'good' learning activities, and the process of knowledge acquisition, active learning, interaction and social engagement (Brown & Long 2006). Learning environments have an important role in coordinating and affording different learning activities (Aimee 2009; Brown & Long 2006; Van Note Chism & Bickford 2002; Van Note Chism 2006; Lomas & Oblinger 2006). With an increased emphasis in interactive and collaborative learning, new designs of environments have been demanded. For example, Bransford, Brown and Cocking (2000) called for new research to review physical learning environments in higher education that facilitate group work and the promotion of interaction between students and students, and students and teachers. Learning environments in this paper are divided into two categories: physical and virtual. The physical relates to the buildings, the classrooms, the laboratories, the libraries, the cafƩs; the formal and inform places where student study and learn. Informal learning spaces or ILS refers to the learning environment that is outside formal facilitation by instructors (Hunley & Schaller 2006), for example, open spaces in corridors or outside classrooms. In addition to lectures in classrooms and studying at libraries, students have always engaged in informal learning activities in other parts of the university campus. Students often engage in deep learning through face-to-face discussions in ILS. In previous university designs, these ILS have often focused on student residences, open areas between buildings where students gather, etc (Jamieson, Dane & Lippman 2005). Wolff (2002), however, points out the importance of focusing on other factors in ILS mostly brought about by new technology affordance and that designing the right ILS can make a major difference in supporting a range of learning activities, both individual and group-based.published_or_final_versio
Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29
GRB 050904 at redshift z=6.29, discovered and observed by Swift and with
spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst
to be identified from beyond the epoch of reionization. Since the progenitors
of long gamma-ray bursts have been identified as massive stars, this event
offers a unique opportunity to investigate star formation environments at this
epoch. Apart from its record redshift, the burst is remarkable in two respects:
first, it exhibits fast-evolving X-ray and optical flares that peak
simultaneously at t~470 s in the observer frame, and may thus originate in the
same emission region; and second, its afterglow exhibits an accelerated decay
in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst,
coincident with repeated and energetic X-ray flaring activity. We make a
complete analysis of available X-ray, NIR, and radio observations, utilizing
afterglow models that incorporate a range of physical effects not previously
considered for this or any other GRB afterglow, and quantifying our model
uncertainties in detail via Markov Chain Monte Carlo analysis. In the process,
we explore the possibility that the early optical and X-ray flare is due to
synchrotron and inverse Compton emission from the reverse shock regions of the
outflow. We suggest that the period of accelerated decay in the NIR may be due
to suppression of synchrotron radiation by inverse Compton interaction of X-ray
flare photons with electrons in the forward shock; a subsequent interval of
slow decay would then be due to a progressive decline in this suppression. The
range of acceptable models demonstrates that the kinetic energy and circumburst
density of GRB 050904 are well above the typical values found for low-redshift
GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor
modifications and 1 extra figur
Understanding thermal alleviation in cold dwell fatigue in titanium alloys
Dwell fatigue facet nucleation has been investigated in isothermal rig disc spin tests and under anisothermal in-service engine conditions in titanium alloy IMI834 using Ī±-HCP homogenised and faithful Ī±-Ī² lamellar microstructure crystal plasticity representations. The empirically observed facet nucleation and disc failure at low stress in the isothermal spin tests has been explained and originates from the material rate sensitivity giving rise to soft grain creep accumulation and hard grain basal stresses which increase with fatigue cycling until facet nucleation. The Ī±-HCP homogenised model is not able to capture this observed behaviour at sensible applied stresses. In contrast to the isothermal spin tests, anisothermal in-service disc loading conditions generate soft grain slip accumulation predominantly in the first loading cycle after which no further load shedding nor soft grain creep accumulation is observed, such that the behaviour is stable, with no further increase in hard grain basal stress so that facet nucleation does not occur, as observed empirically. The thermal alleviation, which derives from in-service loading conditions and gives the insensitivity to dwell fatigue dependent on the temperature excursions, has been explained. A stress-temperature map for IMI834 alloy has been established to demarcate the ranges for which the propensity for dwell fatigue facet nucleation is high, threatening or low
Neutrino Telescopes as a Direct Probe of Supersymmetry Breaking
We consider supersymmetric models where the scale of supersymmetry breaking
lies between 5 GeV and 5 GeV. In this class of
theories, which includes models of gauge mediated supersymmetry breaking, the
lightest supersymmetric particle is the gravitino. The next to lightest
supersymmetric particle is typically a long lived charged slepton with a
lifetime between a microsecond and a second, depending on its mass. Collisions
of high energy neutrinos with nucleons in the earth can result in the
production of a pair of these sleptons. Their very high boost means they
typically decay outside the earth. We investigate the production of these
particles by the diffuse flux of high energy neutrinos, and the potential for
their observation in large ice or water Cerenkov detectors. The relatively
small cross-section for the production of supersymmetric particles is partially
compensated for by the very long range of heavy particles. The signal in the
detector consists of two parallel charged tracks emerging from the earth about
100 meters apart, with very little background. A detailed calculation using the
Waxman-Bahcall limit on the neutrino flux and realistic spectra shows that
km experiments could see as many as 4 events a year. We conclude that
neutrino telescopes will complement collider searches in the determination of
the supersymmetry breaking scale, and may even give the first evidence for
supersymmetry at the weak scale.Comment: 4 pages, 3 figure
Collaborative Computation in Self-Organizing Particle Systems
Many forms of programmable matter have been proposed for various tasks. We
use an abstract model of self-organizing particle systems for programmable
matter which could be used for a variety of applications, including smart paint
and coating materials for engineering or programmable cells for medical uses.
Previous research using this model has focused on shape formation and other
spatial configuration problems (e.g., coating and compression). In this work we
study foundational computational tasks that exceed the capabilities of the
individual constant size memory of a particle, such as implementing a counter
and matrix-vector multiplication. These tasks represent new ways to use these
self-organizing systems, which, in conjunction with previous shape and
configuration work, make the systems useful for a wider variety of tasks. They
can also leverage the distributed and dynamic nature of the self-organizing
system to be more efficient and adaptable than on traditional linear computing
hardware. Finally, we demonstrate applications of similar types of computations
with self-organizing systems to image processing, with implementations of image
color transformation and edge detection algorithms
Refining grain structure and porosity of an aluminium alloy with intensive melt shearing
The official published version of the article can be obtained at the link below.Intensive melt shearing was achieved using a twin-screw machine to condition an aluminium alloy prior to solidification. The results show that intensive melt shearing has a significant grain-refining effect. In addition, the intensive melt shearing reduces both the volume fraction and the size of porosity. It can reduce the density index from 10.50% to 2.87% and the average size of porosity in the samples solidified under partial vacuum from around 1 mm to 100 Ī¼m.Financial support was obtained from the EPSRC and the Technology Strategy Board
- ā¦