524 research outputs found
The Sunrise Mission
The first science flight of the balloon-borne \Sunrise telescope took place
in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern
Canada. We describe the scientific aims and mission concept of the project and
give an overview and a description of the various hardware components: the 1-m
main telescope with its postfocus science instruments (the UV filter imager
SuFI and the imaging vector magnetograph IMaX) and support instruments (image
stabilizing and light distribution system ISLiD and correlating wavefront
sensor CWS), the optomechanical support structure and the instrument mounting
concept, the gondola structure and the power, pointing, and telemetry systems,
and the general electronics architecture. We also explain the optimization of
the structural and thermal design of the complete payload. The preparations for
the science flight are described, including AIV and ground calibration of the
instruments. The course of events during the science flight is outlined, up to
the recovery activities. Finally, the in-flight performance of the
instrumentation is briefly summarized.Comment: 35 pages, 17 figure
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV
We present the first measurement of the inclusive three-jet differential
cross section as a function of the invariant mass of the three jets with the
largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96
TeV. The measurement is made in different rapidity regions and for different
jet transverse momentum requirements and is based on a data set corresponding
to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at
the Fermilab Tevatron Collider. The results are used to test the three-jet
matrix elements in perturbative QCD calculations at next-to-leading order in
the strong coupling constant. The data allow discrimination between
parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected
chi2 values for NNPD
Search for pair production of the scalar top quark in muon+tau final states
We present a search for the pair production of scalar top quarks
(), the lightest supersymmetric partners of the top quarks, in
collisions at a center-of-mass energy of 1.96 TeV, using data
corresponding to an integrated luminosity of {7.3 } collected with the
\dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is
assumed to decay into a quark, a charged lepton, and a scalar neutrino
(). We investigate final states arising from and
. With no significant excess of events observed above the
background expected from the standard model, we set exclusion limits on this
production process in the (,) plane.Comment: Submitted to Phys. Lett.
Measurements of inclusive W+jets production rates as a function of jet transverse momentum in ppbar collisions at sqrt{s}=1.96 TeV
This Letter describes measurements of inclusive W (--> e nu) + n jet cross
sections (n = 1-4), presented as total inclusive cross sections and
differentially in the nth jet transverse momentum. The measurements are made
using data corresponding to an integrated luminosity of 4.2 fb-1 collected by
the D0 detector at the Fermilab Tevatron Collider, and achieve considerably
smaller uncertainties on W +jets production cross sections than previous
measurements. The measurements are compared to next-to-leading order
perturbative QCD (pQCD) calculations in the n =1-3 jet multiplicity bins and to
leading order pQCD calculations in the 4-jet bin. The measurements are
generally in agreement with pQCD predictions, although certain regions of phase
space are identified where the calculations could be improved
Measurement of spin correlation in ttbar production using dilepton final states
We measure the correlation between the spin of the top quark and the spin of
the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final
states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96
TeV, where l is an electron or muon. The data correspond to an integrated
luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab
Tevatron collider. The correlation is extracted from the angles of the two
leptons in the t and tbar rest frames, yielding a correlation strength C=
0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two
standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL
Measurement of the ttbar production cross section using dilepton events in ppbar collisions
We present a measurement of the ttbar production cross section sigma(ttbar)
in ppbar collisions at sqrt{s} = 1.96 TeV using 5.4 fb-1 of integrated
luminosity collected with the D0 detector. We consider final states with at
least two jets and two leptons (ee, emu, mumu), and events with one jet for the
the emu final state as well. The measured cross section is sigma(ttbar)= 7.36
+0.90-0.79 (stat + syst) pb. This result combined with the cross section
measurement in the lepton + jets final state yields sigma(ttbar)=7.56
+0.63-0.56 (stat + syst) pb, which agrees with the standard model expectation.
The relative precision of 8% of this measurement is comparable to the latest
theoretical calculations.Comment: 9 pages, published in Phys. Lett.
- âŠ