1,072 research outputs found
Multilevel IRT Modeling in Practice with the Package mlirt
Variance component models are generally accepted for the analysis of hierarchical structured data. A shortcoming is that outcome variables are still treated as measured without an error. Unreliable variables produce biases in the estimates of the other model parameters. The variability of the relationships across groups and the group-effects on individuals' outcomes differ substantially when taking the measurement error in the dependent variable of the model into account. The multilevel model can be extended to handle measurement error using an item response theory (IRT) model, leading to a multilevel IRT model. This extended multilevel model is in particular suitable for the analysis of educational response data where students are nested in schools and schools are nested within cities/countries.\u
Multilevel IRT Modeling in Practice with the Package mlirt
Variance component models are generally accepted for the analysis of hierarchical structured data. A shortcoming is that outcome variables are still treated as measured without an error. Unreliable variables produce biases in the estimates of the other model parameters. The variability of the relationships across groups and the group-effects on individuals' outcomes differ substantially when taking the measurement error in the dependent variable of the model into account. The multilevel model can be extended to handle measurement error using an item response theory (IRT) model, leading to a multilevel IRT model. This extended multilevel model is in particular suitable for the analysis of educational response data where students are nested in schools and schools are nested within cities/countries.
Bayesian tests on components of the compound symmetry covariance matrix
Complex dependency structures are often conditionally modeled, where random effects parameters are used to specify the natural heterogeneity in the population. When interest is focused on the dependency structure, inferences can be made from a complex covariance matrix using a marginal modeling approach. In this marginal modeling framework, testing covariance parameters is not a boundary problem. Bayesian tests on covariance parameter(s) of the compound symmetry structure are proposed assuming multivariate normally distributed observations. Innovative proper prior distributions are introduced for the covariance components such that the positive definiteness of the (compound symmetry) covariance matrix is ensured. Furthermore, it is shown that the proposed priors on the covariance parameters lead to a balanced Bayes factor, in case of testing an inequality constrained hypothesis. As an illustration, the proposed Bayes factor is used for testing (non-)invariant intra-class correlations across different group types (public and Catholic schools), using the 1982 High School and Beyond survey data
Person-Fit Statistics for Joint Models for Accuracy and Speed
Response accuracy and response time data can be analyzed with a joint model to measure ability and speed of working, while accounting for relationships between item and person characteristics. In this study, person-fit statistics are proposed for joint models to detect aberrant response accuracy and/or response time patterns. The person-fit tests take the correlation between ability and speed into account, as well as the correlation between item characteristics. They are posited as Bayesian significance tests, which have the advantage that the extremeness of a test statistic value is quantified by a posterior probability. The person-fit tests can be computed as by-products of a Markov chain Monte Carlo algorithm. Simulation studies were conducted in order to evaluate their performance. For all person-fit tests, the simulation studies showed good detection rates in identifying aberrant patterns. A real data example is given to illustrate the person-fit statistics for the evaluation of the joint model
Modeling of Responses and Response Times with the Package cirt
In computerized testing, the test takers' responses as well as their response times on the items are recorded. The relationship between response times and response accuracies is complex and varies over levels of observation. For example, it takes the form of a tradeoff between speed and accuracy at the level of a fixed person but may become a positive correlation for a population of test takers. In order to explore such relationships and test hypotheses about them, a conjoint model is proposed. Item responses are modeled by a two-parameter normal-ogive IRT model and response times by a lognormal model. The two models are combined using a hierarchical framework based on the fact that response times and responses are nested within individuals. All parameters can be estimated simultaneously using an MCMC estimation approach. A R-package for the MCMC algorithm is presented and explained.
Bayes Factor Covariance Testing in Item Response Models
Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies
- …