109 research outputs found
The Role of Radioactivities in Astrophysics
I present both a history of radioactivity in astrophysics and an introduction
to the major applications of radioactive abundances to astronomy
Updated Nucleosynthesis Constraints on Unstable Relic Particles
We revisit the upper limits on the abundance of unstable massive relic
particles provided by the success of Big-Bang Nucleosynthesis calculations. We
use the cosmic microwave background data to constrain the baryon-to-photon
ratio, and incorporate an extensively updated compilation of cross sections
into a new calculation of the network of reactions induced by electromagnetic
showers that create and destroy the light elements deuterium, he3, he4, li6 and
li7. We derive analytic approximations that complement and check the full
numerical calculations. Considerations of the abundances of he4 and li6 exclude
exceptional regions of parameter space that would otherwise have been permitted
by deuterium alone. We illustrate our results by applying them to massive
gravitinos. If they weigh ~100 GeV, their primordial abundance should have been
below about 10^{-13} of the total entropy. This would imply an upper limit on
the reheating temperature of a few times 10^7 GeV, which could be a potential
difficulty for some models of inflation. We discuss possible ways of evading
this problem.Comment: 40 pages LaTeX, 18 eps figure
Characteristics of Early-Onset vs Late-Onset Colorectal Cancer: A Review.
The incidence of early-onset colorectal cancer (younger than 50 years) is rising globally, the reasons for which are unclear. It appears to represent a unique disease process with different clinical, pathological, and molecular characteristics compared with late-onset colorectal cancer. Data on oncological outcomes are limited, and sensitivity to conventional neoadjuvant and adjuvant therapy regimens appear to be unknown. The purpose of this review is to summarize the available literature on early-onset colorectal cancer.
Within the next decade, it is estimated that 1 in 10 colon cancers and 1 in 4 rectal cancers will be diagnosed in adults younger than 50 years. Potential risk factors include a Westernized diet, obesity, antibiotic usage, and alterations in the gut microbiome. Although genetic predisposition plays a role, most cases are sporadic. The full spectrum of germline and somatic sequence variations implicated remains unknown. Younger patients typically present with descending colonic or rectal cancer, advanced disease stage, and unfavorable histopathological features. Despite being more likely to receive neoadjuvant and adjuvant therapy, patients with early-onset disease demonstrate comparable oncological outcomes with their older counterparts.
The clinicopathological features, underlying molecular profiles, and drivers of early-onset colorectal cancer differ from those of late-onset disease. Standardized, age-specific preventive, screening, diagnostic, and therapeutic strategies are required to optimize outcomes
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
Recommended from our members
Modeling electron heat transport during magnetic field buildup in SSPX
A model for spheromak magnetic field buildup and electron thermal transport, including a thermal diffusivity associated with magnetic turbulence during helicity injection is applied to a SSPX equilibrium, with a maximum final magnetic field of 1.3 T. Magnetic field-buildup times of 1.0 X 10-3, 5.0 X 10-4 and 1.0 X 10-4 s were used in the model to examine their effects on electron thermal transport. It is found that at transport run time of 4 x 10-3 s, the fastest buildup-time results in the highest final temperature profile, with a core temperature of 0.93 kev while requiring the lowest input energy at 140 KJ. The results show that within the model the most rapid buildup rate generates the highest electron temperature at the fastest rate and at the lowest consumption of energy. However, the peak power requirements are large (> 600 MW for the fastest buildup case examined)
- …