743 research outputs found
Multi-Phase Defense by the Big-Headed Ant, Pheidole obtusospinosa, Against Raiding Army Ants
Army ants are well known for their destructive raids of other ant colonies. Some known defensive strategies include nest evacuation, modification of nest architecture, blockade of nest entrances using rocks or debris, and direct combat outside the nest. Since army ants highly prefer Pheidole ants as prey in desert habitats, there may be strong selective pressure on Pheidole to evolve defensive strategies to better survive raids. In the case of P. obtusospinosa Pergande (Hymenoptera: Formicidae), the worker caste system includes super majors in addition to smaller majors and minor workers. Interestingly, P. obtusospinosa and the six other New World Pheidole species described to have polymorphic major workers are all found in the desert southwest and adjacent regions of Mexico, all co-occurring with various species of Neivamyrmex army ants. Pheidole obtusospinosa used a multi-phase defensive strategy against army ant raids that involved their largest major workers. During army ant attacks, these super majors were involved in blocking the nest entrance with their enlarged heads. This is the first description of defensive head-blocking by an ant species that lacks highly modified head morphology, such as a truncated or disc-shaped head. P. obtusospinosa super majors switched effectively between passive headblocking at the nest entrance and aggressive combat outside the nest. If this multi-phase strategy is found to be used by other Pheidole species with polymorphic majors in future studies, it is possible that selective pressure by army ant raids may have been partially responsible for the convergent evolution of this extra worker caste
No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies
Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots
In this chapter we review the use of spins in optically-active InAs quantum
dots as the key physical building block for constructing a quantum repeater,
with a particular focus on recent results demonstrating entanglement between a
quantum memory (electron spin qubit) and a flying qubit (polarization- or
frequency-encoded photonic qubit). This is a first step towards demonstrating
entanglement between distant quantum memories (realized with quantum dots),
which in turn is a milestone in the roadmap for building a functional quantum
repeater. We also place this experimental work in context by providing an
overview of quantum repeaters, their potential uses, and the challenges in
implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the
Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W.
Mitchell
Slow and fast diffusion in a lead sulphate gravity separation process
A model for the growth of lead sulphate particles in a gravity separation system
from the crystal glassware industry is presented. The lead sulphate particles are an undesirable
byproduct, and thus the model is used to ascertain the optimal system temperature configuration
such that particle extraction is maximised. The model describes the evolution of a single,
spherical particle due to the mass flux of lead particles from a surrounding acid solution. We
divide the concentration field into two separate regions. Specifically, a relatively small boundary
layer region around the particle is characterised by fast diffusion, and is thus considered quasistatic.
In contrast, diffusion in the far-field is slower, and hence assumed to be time-dependent.
The final system consisting of two nonlinear, coupled ordinary differential equations for the
particle radius and lead concentration, is integrated numerically
Environment Orientation : a structured simulation approach for agent-based complex systems
Complex systems are collections of independent agents interacting with each other and with their environment to produce emergent behaviour. Agent-based computer simulation is one of the main ways of studying complex systems. A naive approach to such simulation can fare poorly, due to large communication overhead, and due to the scope for deadlock between the interacting agents sharing a computational platform. Agent interaction can instead be considered entirely from the point of view of the environment(s) within which the agents interact. Structuring a simulation using such Environment Orientation leads to a simulation that reduces communication overhead, that is effectively deadlock-free, and yet still behaves in the manner required. Additionally the Environment Orientation architecture eases the development of more sophisticated large-scale simulations, with multiple kinds of complex agents, situated in and interacting with multiple kinds of environments. We describe the Environment Orientation simulation architecture. We report on a number of experiments that demonstrate the effectiveness of the Environment Orientation approach: a simple flocking system, a flocking system with multiple sensory environments, and a flocking system in an external environment
Merging cloned alloy models with colorful refactorings
Likewise to code, clone-and-own is a common way to create variants of a model, to explore the impact of different features while exploring the design of a software system. Previously, we have introduced Colorful Alloy, an extension of the popular Alloy language and toolkit to support feature-oriented design, where model elements can be annotated with feature expressions and further highlighted with different colors to ease understanding. In this paper we propose a catalog of refactorings for Colorful Alloy models, and show how they can be used to iteratively merge cloned Alloy models into a single feature-annotated colorful model, where the commonalities and differences between the different clones are easily perceived, and more efficient aggregated analyses can be performed.This work is financed by the ERDF — European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation
– COMPETE 2020 Programme and by National Funds through the Portuguese
funding agency, FCT – Fundação para a Ciência e a Tecnologia within project
PTDC/CCI-INF/29583/2017 – POCI-01-0145-FEDER-029583
Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes
Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change
Persistent inequalities in unplanned hospitalisation among colon cancer patients across critical phases of their care pathway, England, 2011-13.
BACKGROUND: Reducing hospital emergency admissions is a key target for all modern health systems. METHODS: We analysed colon cancer patients diagnosed in 2011-13 in England. We screened their individual Hospital Episode Statistics records in the 90 days pre-diagnosis, the 90 days post-diagnosis, and the 90 days pre-death (in the year following diagnosis), for the occurrence of hospital emergency admissions (HEAs). RESULTS: Between a quarter and two thirds of patients experience HEA in the three 90-day periods examined: pre-diagnosis, post-diagnosis and before death. Patients with tumour stage I-III from more deprived backgrounds had higher proportions of HEAs than less deprived patients during all studied periods. This remains even after adjusting for differing distributions of risk factors such as age, sex, comorbidity and stage at diagnosis. CONCLUSIONS: Although in some cases HEAs might be unavoidable or even appropriate, the proportion of HEAs varies by socioeconomic status, even after controlling for the usual patient factors, suggestive of remediable causes of excess emergency healthcare utilisation in patients belonging to higher deprivation groups. Future inquiries should address the potential role of clinical complications, sub-optimal healthcare administration, premature discharge or a lack of social support as potential explanations for these patterns of inequality
Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory
Data from the Sudbury Neutrino Observatory have been used to constrain the
lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The
analysis was based on a search for gamma-rays from the de-excitation of the
residual nucleus that would result from the disappearance of either a proton or
neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90%
confidence for either neutron or proton decay modes. This is about an order of
magnitude more stringent than previous constraints on invisible proton decay
modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of
2) Submitted to Physical Review Letter
- …