37 research outputs found
Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core
AbstractHuman immunodeficiency virus type-1 (HIV-1) particles incorporate a trimeric envelope complex (Env) made of gp120 (SU) and gp41 (TM) heterodimers. It has been previously established that soluble CD4 (sCD4) interaction leads to shedding of gp120 from viral particles, and that gp120 may also be easily lost from virions during incubation or particle purification procedures. In the design of HIV particle or pseudovirion-based HIV vaccines, it may be important to develop strategies to maximize the gp120 content of particles. We analyzed the gp120 retention of HIV-1 laboratory-adapted isolates and primary isolates following incubation with sCD4 and variations in temperature. NL4-3 shed gp120 readily in a temperature- and sCD4-dependent manner. Surprisingly, inactivation of the viral protease led to markedly reduced shedding of gp120. Gp120 shedding was shown to vary markedly between HIV-1 strains, and was not strictly determined by whether the isolate was adapted to growth on immortalized T cell lines or was a primary isolate. Pseudovirions produced by expression of codon-optimized gag and env genes also demonstrated enhanced gp120 retention when an immature core structure was maintained. Pseudovirions of optimal stability were produced through a combination of an immature Gag protein core and a primary isolate Env. These results support the feasibility of utilizing pseudovirion particles as immunogens for the induction of humoral responses directed against native envelope structures
The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages
BACKGROUND: Bacillus anthracis is considered to be a recently emerged clone within the Bacillus cereus sensu lato group. The B. anthracis genome sequence contains four putative lambdoid prophages. We undertook this study in order to understand whether the four prophages are unique to B. anthracis and whether they produce active phages. RESULTS: More than 300 geographically and temporally divergent isolates of B. anthracis and its near neighbors were screened by PCR for the presence of specific DNA sequences from each prophage region. Every isolate of B. anthracis screened by PCR was found to produce all four phage-specific amplicons whereas none of the non-B. anthracis isolates, produced more than one phage-specific amplicon. Excision of prophages could be detected by a PCR based assay for attP sites on extra-chromosomal phage circles and for attB sites on phage-excised chromosomes. SYBR-green real-time PCR assays indicated that prophage excision occurs at very low frequencies (2 × 10(-5 )- 8 × 10(-8)/cell). Induction with mitomycin C increased the frequency of excision of one of the prophages by approximately 250 fold. All four prophages appear to be defective since, mitomycin C induced culture did not release any viable phage particle or lyse the cells or reveal any phage particle under electron microscopic examination. CONCLUSION: The retention of all four putative prophage regions across all tested strains of B. anthracis is further evidence of the very recent emergence of this lineage and the prophage regions may be useful for differentiating the B. anthracis chromosome from that of its neighbors. All four prophages can excise at low frequencies, but are apparently defective in phage production
Paring Down HIV Env: Design and Crystal Structure of a Stabilized Inner Domain of HIV-1 gp120 Displaying a Major ADCC Target of the A32 Region
SummaryEvidence supports a role of antibody-dependent cellular cytotoxicity (ADCC) toward transitional epitopes in the first and second constant (C1-C2) regions of gp120 (A32-like epitopes) in preventing HIV-1 infection and in vaccine-induced protection. Here, we describe the first successful attempt at isolating the inner domain (ID) of gp120 as an independent molecule that encapsulates the A32-like region within a minimal structural unit of the HIV-1 Env. Through structure-based design, we developed ID2, which consists of the ID expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. ID2 expresses C1-C2 epitopes in the context of CD4-triggered full-length gp120 but without any known neutralizing epitope present. Thus, ID2 represents a novel probe for the analysis and/or selective induction of antibody responses to the A32 epitope region. We also present the crystal structure of ID2 complexed with mAb A32, which defines its epitope
Induction of Neutralizing Antibodies against Human Immunodeficiency Virus Type 1 Primary Isolates by Gag-Env Pseudovirion Immunization
A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components
Cholera Toxin and Heat-Labile Enterotoxin Activate Human Monocyte-Derived Dendritic Cells and Dominantly Inhibit Cytokine Production through a Cyclic AMP-Dependent Pathway
Cholera toxin (CT) and heat-labile enterotoxin (LT) are powerful mucosal adjuvants whose cellular targets and mechanism of action are unknown. There is emerging evidence that dendritic cells (DC) are one of the principal cell types that mediate the adjuvant effects of these toxins in vivo. Here we investigate the effects of CT and LT on the maturation of human monocyte-derived DC (MDDC) in vitro. We found that an enzymatically active A domain is necessary for both CT and LT to induce the maturation of MDDC and that this activation is strictly cyclic AMP (cAMP) dependent. ADP-ribosylation-defective derivatives of these toxins failed to induce maturation of MDDC, whereas dibutyryl-cyclic-3′,5′-AMP and Forskolin mimic the maturation of MDDC induced by CT and LT. In addition, an inhibitor of cAMP-dependent kinases, Rp-8-Br-cAMPs, blocked the ability of CT, LT, and Forskolin to activate MDDC. CT, LT, dibutyryl-cyclic-3′,5′-AMP, and Forskolin also dominantly inhibit interleukin 12 and tumor necrosis factor alpha production by MDDC in the presence of saturating concentrations of lipopolysaccharide. Taken together, these results show that the effects of CT and LT on MDDC are mediated by cAMP