2 research outputs found

    MNL-Bandit in non-stationary environments

    Full text link
    In this paper, we study the MNL-Bandit problem in a non-stationary environment and present an algorithm with a worst-case expected regret of O~(min⁑{NTLβ€…β€Š,β€…β€ŠN13(Ξ”βˆžK)13T23+NT})\tilde{O}\left( \min \left\{ \sqrt{NTL}\;,\; N^{\frac{1}{3}}(\Delta_{\infty}^{K})^{\frac{1}{3}} T^{\frac{2}{3}} + \sqrt{NT}\right\}\right). Here NN is the number of arms, LL is the number of changes and Ξ”βˆžK\Delta_{\infty}^{K} is a variation measure of the unknown parameters. Furthermore, we show matching lower bounds on the expected regret (up to logarithmic factors), implying that our algorithm is optimal. Our approach builds upon the epoch-based algorithm for stationary MNL-Bandit in Agrawal et al. 2016. However, non-stationarity poses several challenges and we introduce new techniques and ideas to address these. In particular, we give a tight characterization for the bias introduced in the estimators due to non stationarity and derive new concentration bounds

    Last Switch Dependent Bandits with Monotone Payoff Functions

    Full text link
    In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.Comment: Accepted to the 40th International Conference on Machine Learning (ICML 2023
    corecore