15 research outputs found

    Les alliages germanium-étain et silicium-germanium-étain: croissance, propriétés structurales et stabilité thermique

    Get PDF
    Les nanotubes de carbone ont des propriĂ©tĂ©s mĂ©caniques et Ă©lectriques trĂšs intĂ©ressantes pour plusieurs applications en Ă©lectronique. Ils sont trĂšs rĂ©sistants Ă  la dĂ©formation et peuvent ĂȘtre d’excellents conducteurs ou semi-conducteurs. Toutefois, manipuler les nanotubes individuellement pour construire des dispositifs structurĂ©s demeure trĂšs difficile. Il n’existe pas encore de mĂ©thode permettant de contrĂŽler Ă  la fois les propriĂ©tĂ©s Ă©lectriques, l’orientation et le positionnement spatial d’un ensemble de nanotubes. Produire des rĂ©seaux dĂ©sordonnĂ©s de nanotubes est par contre beaucoup plus facile, et ces systĂšmes possĂšdent de plus une bonne conductivitĂ© Ă©lectrique qui les rend trĂšs intĂ©ressants, notamment comme matĂ©riaux d’électrodes transparentes et flexibles. Il y a trois principales mĂ©thodes de fabrication employĂ©es pour produire des rĂ©seaux de nanotubes : le dĂ©pĂŽt de solution, la croissance sur substrat et l’enchĂąssement dans une matrice de polymĂšres. Le dĂ©pĂŽt de solution peut engendrer des rĂ©seaux de densitĂ©s diverses sur une variĂ©tĂ© de substrats. La croissance directe sur substrat permet quant Ă  elle de produire des rĂ©seaux trĂšs propres sur des substrats tels le SiO2. De son cĂŽtĂ©, l’enchĂąssement dans une matrice de polymĂšres permet de produire des volumes composites contenant des quantitĂ©s variables de nanotubes. Beaucoup de paramĂštres comme la longueur des tubes, leur orientation ou leur tortuositĂ© influencent cependant les propriĂ©tĂ©s de ces rĂ©seaux et la prĂ©sence de dĂ©sordre structural complique la comprĂ©hension de leurs interactions. PrĂ©voir les propriĂ©tĂ©s d’un rĂ©seau comme la conductivitĂ© Ă  partir de quelques caractĂ©ristiques comme la taille des tubes et leur densitĂ© peut ĂȘtre difficile. Cette tĂąche devient d’autant plus complexe si l’on veut maintenant identifier les paramĂštres qui vont permettre d’optimiser les performances d’un dispositif contenant ce matĂ©riau. Nous avons choisi d’aborder le problĂšme des rĂ©seaux de nanotubes de carbone en dĂ©veloppant une sĂ©rie d’outils numĂ©riques qui sont principalement basĂ©s sur la mĂ©thode Monte-Carlo. Nous tenons compte d’un grand nombre de paramĂštres pour dĂ©crire les caractĂ©ristiques des rĂ©seaux, ce qui nous permet une reprĂ©sentation plus fiable de rĂ©seaux rĂ©els ainsi qu’une grande polyvalence pour le choix des constituants des rĂ©seaux pouvant ĂȘtre simulĂ©s. Les outils que nous avons dĂ©veloppĂ©s, regroupĂ©s dans le logiciel RPH-HPN pour RĂ©seaux percolatifs hybrides - Hybrid Percolation Networks, permettent la construction des rĂ©seaux alĂ©atoires, dĂ©tectent les contacts entre les tubes, traduisent les systĂšmes en circuits Ă©lectriques Ă©quivalents et calculent les propriĂ©tĂ©s globales.----------Abstract Carbon nanotubes have very interesting mechanical and electrical properties for various applications in electronics. They are highly resistant to deformation and can be excellent conductors or semiconductors. However, manipulating individual nanotubes to build structured devices remains very difficult. There is no method for controlling all of the electrical properties, the orientation and the spatial positioning of a large number of nanotubes. The fabrication of disordered networks of nanotubes is much easier, and these systems have a good electrical conductivity which makes them very interesting, especially as materials of transparent and flexible electrodes. There are three main methods of production used to make networks of nanotubes: the solution deposition, the direct growth on substrate and the embedding in a polymer matrix. The solution deposition method can form networks of various densities on a variety of substrates, the direct growth of nanotubes allows the creation of very clean networks on substrates such as SiO2, and the embedding in a polymer matrix can give composite volumes containing varying amounts of nanotubes. Many parameters such as the length of the tubes, their orientation or their tortuosity influence the properties of these networks and the presence of structural disorder complicates the understanding of their interactions. Predicting the properties of a network, such as conductivity, from a few characteristics such as size and density of the tubes can be difficult. This task becomes even more complex if one wants to identify the parameters that will optimize the performance of a device containing the material. We chose to address the carbon nanotube networks problem by developing a series of computer simulation tools that are mainly based on the Monte Carlo method. We take into account a large number of parameters to describe the characteristics of the networks, which allows for a more reliable representation of real networks as well as versatility in the choice of network components that can be simulated. The tools we have developed, grouped together in the RPH-HPN software RĂ©seaux percolatifs hybrides - Hybrid Percolation Networks, construct random networks, detect contact between the tubes, translate the systems to equivalent electrical circuits and calculate global properties. An infinity of networks can have the same basic characteristics (size, diameter, etc.) and therefore the properties of a particular random network are not necessarily representative of the average properties of all networks. To obtain those general properties, we simulate a large number of random networks with the same basic characteristics and the average of the quantities is determined

    Étude de la dynamique du quench dans diffĂ©rentes architectures de rubans supraconducteurs Ă  haute tempĂ©rature critique

    Get PDF
    La dĂ©couverte du premier supraconducteur Ă  haute tempĂ©rature critique (HTS) en 1986 marque une grande Ă©tape dans l’histoire des matĂ©riaux supraconducteurs. Cette dĂ©couverte a permis de rĂ©vĂ©ler la famille des cuprates, qui inclut les supraconducteurs avec la tempĂ©rature critique la plus Ă©levĂ©e, envisagĂ©s industriellement. OpĂ©rĂ©s Ă  tempĂ©rature plus Ă©levĂ©e que les supraconducteurs Ă  basse tempĂ©rature critique (LTS), certains HTS peuvent ĂȘtre refroidis Ă  l’azote liquide (relativement bon marchĂ©) contrairement aux LTS, qui nĂ©cessitent des liquides de refroidissement plus dispendieux comme l’hĂ©lium liquide. Le REBaCuO (oĂč l’acronyme RE signifie : terre rare) fait partie de la famille des cuprates et est envisagĂ© dans la fabrication d’électro-aimants pour des applications Ă  fort champ magnĂ©tique notamment les accĂ©lĂ©rateurs de particules et le confinement magnĂ©tique. Pour des applications de ce genre, le REBaCuO est typiquement Ă©laborĂ© sous forme de couches minces sur un ruban mĂ©tallique flexible afin d’ĂȘtre bobinĂ©. Lors de l’utilisation de REBaCuO sous forme de ruban, il n’est pas rare d’observer des zones du ruban qui perdent leurs propriĂ©tĂ©s supraconductrices en raison d’une variation locale du courant critique. À fort courant, ces zones (appelĂ©e points chauds) se mettent Ă  s’élargir Ă  une certaine vitesse appelĂ©e la vitesse de propagation de la zone normale (NZPV). Si la NZPV est trop faible et que les points chauds ne sont pas dĂ©tectĂ©s Ă  temps, la tempĂ©rature locale peut augmenter de façon Ă  endommager le ruban. Un problĂšme des rubans HTS comme le REBaCuO est que leur NZPV est trĂšs faible (0.1−10 cm/s Ă  77 K) comparativement aux LTS (100−1000 cm/s Ă  4 K), ce qui les rend plus vulnĂ©rables aux points chauds. Une solution Ă  ce problĂšme est l’architecture de ruban appelĂ©e current flow diverter (CFD), dĂ©veloppĂ©e Ă  Polytechnique MontrĂ©al, qui permet d’augmenter la NZPV de ces rubans. L’augmentation de la NZPV dans ces rubans permet une dĂ©tection plus rapide des points chauds, ce qui les protĂšge mieux. Cette architecture consiste en un ruban HTS commercial (Ag/HTS/substrat) oĂč l’interface rĂ©sistive entre le supraconducteur et l’argent (Ag) a Ă©tĂ© modifiĂ©e de telle sorte qu’elle est Ă©levĂ©e au centre du ruban et faible sur les bords. NĂ©anmoins, pour le moment, la technique de fabrication de l’architecture CFD n’a Ă©tĂ© montrĂ©e que sur de petits Ă©chantillons (12 cm) et est difficilement rĂ©alisable par les manufacturiers de ruban HTS.----------Abstract The discovery of the first high-temperature superconductor (HTS) in 1986, was a big step in the history of superconductivity. This discovery led quickly to unveil the cuprate family, which includes materials expected to be used in all kinds of industrial applications. Used at higher temperature than low temperature superconductors (LTS), HTS can be cooled with liquid nitrogen, a cheaper coolant compared to liquid helium used for LTS. The REBaCuO (where RE stands for rare earth elements) is a member of the cuprate family and is expected to be used in high-field applications such as particle accelerators and magnetic confinement. For those applications, REBaCuO is grown as a thin film on a flexible metallic tape. This type of tape is called coated conductors. Due to the variation of the critical current along the HTS tape, it is common that some parts of the tape lose their superconducting properties. At high current, these normal zones (called hot spots) tend to grow at constant speed called the normal zone propagation velocity (NZPV). If the NZPV is low and the hot spots are not detected in time, a degradation of the tape can occur due to the high temperature generated by resistive heating at the hot spots locations. One problem of the HTS tapes like the REBaCuO is their low NZPV (0.1−10 cm/s at 77 K) compared to the LTS (100−1000 cm/s at 4 K). Because of that, the HTS tapes are more vulnerable to damages caused by hot spots. A solution to this problem is the current flow diverter (CFD) architecture, developed at Polytechnique MontrĂ©al, which accelerates the NZPV, allowing a faster detection of hot spots. This architecture, consists in a commercial HTS tape (Ag/HTS/substrate) where the interfacial resistance between the silver (Ag) and the HTS has been modified in order to have a high value in the center of the tape and a low value on the sides of the tape. However, so far, this architecture has been realized only on short samples (12 cm) and is hard to implement in an industrial environment

    Concepts of Static vs. Dynamic Current Transfer Length in 2G HTS coated conductors with a Current Flow Diverter Architecture

    Full text link
    This paper uses both experimental and numerical approaches to revisit the concept of current transfer length (CTL) in second-generation high-temperature superconductor coated conductors with a current flow diverter (CFD) architecture. The CFD architecture has been implemented on eight commercial coated conductors samples from THEVA. In order to measure the 2-D current distribution in the silver stabilizer layer of the samples, we first used a custom-made array of 120 voltage taps to measure the surface potential distribution. Then, the so-called "static" CTL (λs\lambda_s) was extracted using a semi-analytical model that fitted well the experimental data. As defined in this paper, the static CTL on a 2-D domain is a generalization of the definition commonly used in literature. In addition, we used a 3-D finite element model to simulate the normal zone propagation in our CFD samples, in order to quantify their "dynamic" CTL (λd\lambda_d), a new concept introduced in this paper and defined as the CTL observed during the propagation of a quenched region. The results show that, for a CFD architecture, λd\lambda_d is always larger than λs\lambda_s, whereas λd=λs\lambda_d = \lambda_s when the interfacial resistance between the stabilizer and the superconductor layers is the same everywhere. We proved that the cause of these different behaviors is related to the shape of the normal zone, which is curved for the CFD architecture, and rectangular otherwise. Finally, we showed that the NZPV is proportional to λd\lambda_d, not with λs\lambda_s, which suggests that the dynamic CTL λd\lambda_d is the most general definition of the CTL and should always be used when current crowding and non-uniform heat generation occurs around a normal zone.Comment: 11 pages, 10 figure

    Chemical Solution Deposition of Insulating Yttria Nanolayers as Current Flow Diverter in Superconducting GdBa2Cu3O7-ÎŽ Coated Conductors

    Get PDF
    The primary benefit of a metallic stabilization/shunt in high temperature superconductor (HTS) coated conductors (CCs) is to prevent joule heating damage by providing an alternative path for the current flow during the HTS normal state transition (i.e., quench). However, the shunt presence in combination with unavoidable fluctuations in the critical current (I c) of the HTS film can develop a localized quench along the CC's length if the operational current is kept close to I c. This scenario, also known as the hot-spot regime, can lead to the rupture of the CC if the local quench does not propagate fast enough. The current flow diverter (CFD) is the CC architecture concept that has proven to increase the conductor's robustness against a hot-spot regime by simply boosting the quench velocity in the CC, which avoids the shunt compromise in some applications. This work investigates a practical manufacturing route for incorporating the CFD architecture in a reel-to-reel system via the preparation of yttrium oxide (Y2O3) as an insulating thin nanolayer (∌100 nm) on top of a GdBa2Cu3O7 (GdBCO) superconductor. Chemical solution deposition (CSD) using ink jet printing (IJP) is shown to be a suitable manufacturing approach. Two sequences of the experimental steps have been investigated, where oxygenation of the GdBCO layer is performed after or before the solution deposition and the Y2O3 nanolayer thermal treatment formation step. A correlated analysis of the microstructure, in situ oxygenation kinetics, and superconducting properties of the Ag/Y2O3/GdBCO trilayer processed under different conditions shows that a new customized functional CC can be prepared. The successful achievement of the CFD effect in the case of the preoxygenated customized CC was confirmed by measuring the current transfer length, thus demonstrating the effectiveness of the CSD-IJP as a processing method.We acknowledge the funding of this research by FASTGRID Project (EU-H2020, 721019); the Projects COACHSUPENERGY (MAT2014-51778-C2-1-R) and SUMATE (RTI2018-095853-BC21 and RTI2018-095853-B-C22) from the Spanish Ministry of Economy and Competitiveness, which were cofunded by the European Regional Development Fund; and the Project 2017-SGR 753 from Generalitat de Catalunya and the COST Action NANOCOHYBRI (CA16218). ICMAB authors also acknowledge the Center of Excellence awards Severo Ochoa SEV-2015-0496 and CEX2019-000917-SWith funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Normal zone propagation in various REBCO tape architectures

    Get PDF
    The normal zone propagation velocity (NZPV) of three families of REBCO tape architectures designed for superconducting fault current limiters and to be used in high voltage direct current transmission systems has been measured experimentally in liquid nitrogen at atmospheric pressure. The measured NZPVs span more than three orders of magnitude depending on the tape architectures. Numerical simulations based on finite elements allow us to reproduce the experiments well. The dynamic current transfer length (CTL) extracted from the numerical simulations was found to be the dominating characteristic length determining the NZPV instead of the thermal diffusion length. We therefore propose a simple analytical model, whose key parameters are the dynamic CTL, the heat capacity and the resistive losses in the metallic layers, to calculate the NZPV.The authors acknowledge the funding of this research by FASTGRID Project (EU-H2020, 721019), the Projects COACHSUPENERGY (MAT2014-51778-C2-1-R), SUMATE (RTI2018-095853-BC21 and RTI2018-095853-B-C22) from the Spanish Ministry of Economy and Competitiveness which were cofunded by the European Regional Development Fund, the Project 2017-SGR 753 from Generalitat de Catalunya and the COST Action NANOCOHYBRI (CA16218). Polytechnique MontrĂ©al authors also acknowledge NSERC (Canada), FRQNT (QuĂ©bec), the RQMP infrastructure and CMC microsystems for financial support. ICMAB authors also acknowledge the Center of Excellence awards Severo Ochoa SEV-2015-0496 and CEX2019-000917-S.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore