8,560 research outputs found

    Field-dependent diamagnetic transition in magnetic superconductor Sm1.85Ce0.15CuO4−ySm_{1.85} Ce_{0.15} Cu O_{4-y}

    Full text link
    The magnetic penetration depth of single crystal Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} was measured down to 0.4 K in dc fields up to 7 kOe. For insulating Sm2CuO4\rm{Sm_2CuO_4}, Sm3+^{3+} spins order at the N\'{e}el temperature, TN=6T_N = 6 K, independent of the applied field. Superconducting Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} (Tc≈23T_c \approx 23 K) shows a sharp increase in diamagnetic screening below T∗(H)T^{\ast}(H) which varied from 4.0 K (H=0H = 0) to 0.5 K (H=H = 7 kOe) for a field along the c-axis. If the field was aligned parallel to the conducting planes, T∗T^{\ast} remained unchanged. The unusual field dependence of T∗T^{\ast} indicates a spin freezing transition that dramatically increases the superfluid density.Comment: 4 pages, RevTex

    Artificial Neural Network Approach to the Analytic Continuation Problem

    Full text link
    Inverse problems are encountered in many domains of physics, with analytic continuation of the imaginary Green's function into the real frequency domain being a particularly important example. However, the analytic continuation problem is ill defined and currently no analytic transformation for solving it is known. We present a general framework for building an artificial neural network (ANN) that solves this task with a supervised learning approach. Application of the ANN approach to quantum Monte Carlo calculations and simulated Green's function data demonstrates its high accuracy. By comparing with the commonly used maximum entropy approach, we show that our method can reach the same level of accuracy for low-noise input data, while performing significantly better when the noise strength increases. The computational cost of the proposed neural network approach is reduced by almost three orders of magnitude compared to the maximum entropy methodComment: 6 pages, 4 figures, supplementary material available as ancillary fil

    Gapped tunneling spectra in the normal state of Pr2−x_{2-x}Cex_xCuO4_4

    Full text link
    We present tunneling data in the normal state of the electron doped cuprate superconductor Pr2−x_{2-x}Cex_xCuO4_4 for three different values of the doping xx. The normal state is obtained by applying a magnetic field greater than the upper critical field, Hc2H_{c2} for T<TcT < T_c. We observe an anomalous normal state gap near the Fermi level. From our analysis of the tunneling data we conclude that this is a feature of the normal state density of states. We discuss possible reasons for the formation of this gap and its implications for the nature of the charge carriers in the normal and the superconducting states of cuprate superconductors.Comment: 7 pages ReVTeX, 11 figures files included, submitted to PR

    Bi-defects of Nematic Surfactant Bilayers

    Full text link
    We consider the effects of the coupling between the orientational order of the two monolayers in flat nematic bilayers. We show that the presence of a topological defect on one bilayer generates a nontrivial orientational texture on both monolayers. Therefore, one cannot consider isolated defects on one monolayer, but rather associated pairs of defects on either monolayer, which we call bi-defects. Bi-defects generally produce walls, such that the textures of the two monolayers are identical outside the walls, and different in their interior. We suggest some experimental conditions in which these structures could be observed.Comment: RevTeX, 4 pages, 3 figure

    Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects

    Full text link
    We calculate the interaction between two spherical colloidal particles embedded in the isotropic phase of a nematogenic liquid. The surface of the particles induces wetting nematic coronas that mediate an elastic interaction. In the weak wetting regime, we obtain exact results for the interaction energy and the texture, showing that defects and biaxiality arise, although they are not topologically required. We evidence rich behaviors, including the possibility of reversible colloidal aggregation and dispersion. Complex anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure

    Environmental protection of titanium alloys in centrifugal compressors at 500°C in saline atmosphere

    Get PDF
    The use of the titanium alloy Ti-6246 (Ti–6Al–2Sn–4Zr–6Mo, wt-%) for gas turbine compressors allows an increase in working temperature and stress level. Under severe service conditions, the material experiences combined high temperature and high mechanical stress and, in saline atmospheres, stress corrosion cracking (SCC) can occur, leading to catastrophic mechanical failure. The present study was performed to evaluate the potential of several surface treatments to protect Ti-6246 alloy, after salt deposit, from hot salt SCC at temperatures ?500°C and 500 MPa static mechanical stress conditions. Shot peening, thermal oxidation and metal–ceramic coatings were investigated. Experimental results confirm the existence of brittle stress corrosion phenomena marked by a low residual elongation of test samples and the presence of oxides on the fracture surfaces. Both shot peening and metal–ceramic coatings increase the hot salt SCC resistance of the alloy. Times to rupture were improved by a factor of 3 for shot peening and by a factor of 10 for metal–ceramic coatings. Inversely, the time to rupture of preoxidised alloys has been halved compared with uncoated alloys. As well as these interesting quantitative results, structural studies of metal–ceramic coatings showed that they are mechanically and chemically compatible with the titanium alloy substructure and should work under severe thermomechanical stresses and aggressive atmospheres

    Dislocation-solute atom interactions in alloys. Technical progress report, February 1, 1975--January 31, 1976

    Full text link
    New results were obtained in two major project areas: (1) surface oxide softening and solute gradients in niobium and tantalum, and (2) mechanical properties of Nb--H and Nb--D alloys. The important results include: (a) observation and characterization of an extremely large softening and ductilizing effect of bcc metals (niobium and tantalum) by application of thin (500 to 1000 A) oxide films coupled with injection of a high density of mobile dislocations; (b) determination of the relative strengthening ductility changes caused by hydrogen and deuterium in niobium. (auth

    Ressources en sols

    Get PDF

    Probing the role of Nd3+ ions in the weak multiferroic character of NdMn2O5 by optical spectroscopies

    Full text link
    Raman and infrared spectroscopies are used as local probes to study the dynamics of the Nd-O bonds in the weakly multiferroic NdMn2O5 system. The temperature dependence of selected Raman excitations reveals the splitting of the Nd-O bonds in NdMn2O5. The Nd3+ ion crystal field (CF) excitations in NdMn2O5 single crystals are studied by infrared transmission as a function of temperature, in the 1800-8000 cm-1 range, and under an applied magnetic field up to 11 T. The frequencies of all 4Ij crystal-field levels of Nd3+ are determined. We find that the degeneracy of the ground-state Kramers doublet is lifted ({\Delta}0 ~7.5 cm-1) due to the Nd3+-Mn3+ interaction in the ferroelectric phase, below TC ~ 28 K. The Nd3+ magnetic moment mNd(T) and its contribution to the magnetic susceptibility and the specific heat are evaluated from {\Delta}0(T) indicating that the Nd3+ ions are involved in the magnetic and the ferroelectric ordering observed below ~ 28 K. The Zeeman splitting of the excited crystal field levels of the Nd3+ ions at low temperature is also analyzed.Comment: This paper is accepted for publication as a Regular Article in Physical Review
    • …
    corecore