134 research outputs found

    Rotational Correlation Functions of Single Molecules

    Full text link
    Single molecule rotational correlation functions are analyzed for several reorientation geometries. Even for the simplest model of isotropic rotational diffusion our findings predict non-exponential correlation functions to be observed by polarization sensitive single molecule fluorescence microscopy. This may have a deep impact on interpreting the results of molecular reorientation measurements in heterogeneous environments.Comment: 5 pages, 4 figure

    Time resolved four‐ and six‐wave mixing in liquids. I. Theory

    Get PDF
    Low-frequency intermolecular dynamics in liquids is studied by ultrafast four- and six-wave mixing. The theory of these nonlinear optical processes is given for electronically nonresonant optical interactions up to fifth order in the electric field. The Born-Oppenheimer approximation is used to separate the motional part of the response functions from coordinate independent electronic hyperpolarizabilities. A large variety of experiments, involving far-infrared absorption, ordinary Rayleigh-Raman or hyper Rayleigh-Raman scattering is covered by this theory. The response in nonresonant six-wave mixing comprises four dynamically different processes. It is shown that one of the terms contains information on the time scale(s) of intermolecular dynamics, that is not available from lower-order nonresonant experiments. For instance, homogenous and inhomogeneous contributions to line broadening can be distinguished. The optical response of harmonic nuclear motion is calculated for nonlinear coordinate dependence of the polarizabilities. Results for level-dependent and level-independent damping of the motion are compared. It is shown that level-dependent damping destroys the interference between different quantum mechanical pathways, yielding an extra contribution to the fifth-order response that has not been discussed before. When two or more nuclear modes determine the optical response, their relative contributions to the four- and six-wave mixing signals are in general different. These contributions are determined by the coordinate dependence of the electronic polarizability, which is usually not fully known, Model calculations are presented for the dynamic parameters of liquid CS2. The theory of this paper will be employed in Part II, to analyze experimental results on femtosecond four- and six-wave mixing

    Acoustic and relaxation processes in supercooled o-ter-phenyl by optical-heterodyne transient grating experiment

    Full text link
    The dynamics of the fragile glass-forming o-ter-phenyl is investigated by time-resolved transient grating experiment with an heterodyne detection technique in a wide temperature range. We investigated the dynamics processes of this glass-former over more then 6 decades in time with an excellent signal/noise. Acoustic, structural and thermal relaxations have been clearly identify and measured in a time-frequency window not covered by previous spectroscopic investigations. A detailed comparison with the density response function, calculated on the basis of generalized hydrodynamics model, has been worked out

    Dynamics of Confined Carbon Disulfide from 165 to 310 K

    No full text
    corecore