45 research outputs found
Temporal regulation of vegetative phase change in plants
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance
Recommended from our members
Fundamental Science Investigations to Develop a 6-MV Laser Triggered Gas Switch for ZR: First Annual Report.
In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports
PUBLIC TRANSPORT IN GHANAIAN CITIES -- A CASE OF UNION POWER.
The performance and development of urban public transport in Ghana are examined and an explanation is sought of the role of unions and how the attempts of Government to develop its own public transport organization have failed. The public transport development options that the Government is now considering attempt to make the best use of the unions\u27 capabilities, while reducing dependence on union powers. The trotros of Ghana have been the mainstay of Ghana\u27s public transport system for many years, despite concerned attempts by successive Governments to develop and maintain publicly organized stage-bus services. A characteristic of this sector is the very powerful influence of the Owner and Driver Unions. Their power is exerted through control of the terminals from which services are operated. Through their control of the terminals, the Unions have effective quantity control of the public transport sector and hence control of service quality. Under its Economic Recovery Programme (ERP) the Government of Ghana is considering divesting itself of its public investment in bus operations. Attempts to use the State-owned transport companies to provide a viable alternative to the trotros have foundered in the usual pitfalls of state ownership. At stake is how to relinquish completely the responsibility of running bus services to the private sector, without the users suffering the imposition of the unions\u27 restrictive practices
The role of small RNAs in vegetative shoot development
Shoot development consists of the production of lateral organs in predictable spatial and temporal patterns at the shoot apex. To properly integrate such programs of growth across different cell and tissue types, plants require highly complex and robust genetic networks. Over the last twenty years, the roles of small, non-coding RNAs (sRNAs) in these networks have become increasingly apparent, not least in vegetative shoot growth. In this review, we describe recent progress in understanding the contribution of sRNAs to the regulation of vegetative shoot growth, and outline persisting experimental limitations in the field
VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms
How organisms control when to transition between different stages of development is a key question in biology. In plants, epigenetic silencing by Polycomb repressive complex 1 (PRC1) and PRC2 plays a crucial role in promoting developmental transitions, including from juvenile-to-adult phases of vegetative growth. PRC1/2 are known to repress the master regulator of vegetative phase change, miR156, leading to the transition to adult growth, but how this process is regulated temporally is unknown. Here we investigate whether transcription factors in the VIVIPAROUS/ABI3-LIKE (VAL) gene family provide the temporal signal for the epigenetic repression of miR156. Exploiting a novel val1 allele, we found that VAL1 and VAL2 redundantly regulate vegetative phase change by controlling the overall level, rather than temporal dynamics, of miR156 expression. Furthermore, we discovered that VAL1 and VAL2 also act independently of miR156 to control this important developmental transition. In combination, our results highlight the complexity of temporal regulation in plants