4 research outputs found
Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Anti-Resorptive Drugs: A Meta-Regression
Few pooled analyses of antiresorptive (AR) treatment trials relate short-term changes in bone turnover markers (BTMs) to subsequent fracture reduction. Such information would be useful to assess new ARs or novel dosing regimens. In the Foundation for the National Institutes of Health (FNIH) Bone Quality project, we analyzed individual-level data from 28,000 participants enrolled in 11 bisphosphonate (BP) and three selective estrogen receptor modulator (SERM) placebo-controlled fracture endpoint trials. Using BTM results for two bone formation markers (bone-specific alkaline phosphatase [bone ALP] and pro-collagen I N-propeptide [PINP]) and two bone resorption markers (N-terminal and C-terminal telopeptide of type I collagen) and incident fracture outcome data, we performed a meta-regression relating the mean net effect of treatment on change in bone turnover (active minus placebo % difference after 3 to 12 months) to the log of study-wide fracture risk reduction, and used linear regression to plot the best fitting line. Separate analyses were performed for incident morphometric vertebral, nonvertebral, and hip fractures over 1 to 4 years of follow-up. Change in bone ALP and PINP were available for over 16,000 and 10,000 participants, respectively. For vertebral fracture, the results showed a strong relationship between treatment-related bone ALP or PINP changes and vertebral fracture risk reduction (r2 = 0.82 [p < 0.001] and r2 = 0.75 [p = 0.011], respectively) Relationships were weaker and no longer statistically significant for nonvertebral (r2 = 0.33 [p = 0.053] and r2 = 0.53 [p = 0.065], respectively) and hip fracture (r2 = 0.17 [p = 0.24] and r2 = 0.43 [p = 0.11], respectively) outcomes. Analyses limited to BP trials gave similar results. For all fracture types, relationships were weaker and nonsignificant for bone resorption markers. We conclude that short-term AR treatment-related changes in bone ALP and PINP strongly predict vertebral fracture treatment efficacy, but not nonvertebral or hip fracture treatment efficacy. Change in bone formation markers might be useful to predict the anti-vertebral fracture efficacy of new AR compounds or novel dosing regiments with approved AR drugs
Comparative analytical performance of multiple plasma Aβ42 and Aβ40 assays and their ability to predict positron emission tomography amyloid positivity
INTRODUCTION: This report details the approach taken to providing a dataset allowing for analyses on the performance of recently developed assays of amyloid beta (Aβ) peptides in plasma and the extent to which they improve the prediction of amyloid positivity. METHODS: Alzheimer's Disease Neuroimaging Initiative plasma samples with corresponding amyloid positron emission tomography (PET) data were run on six plasma Aβ assays. Statistical tests were performed to determine whether the plasma Aβ measures significantly improved the area under the receiver operating characteristic curve for predicting amyloid PET status compared to age and apolipoprotein E (APOE) genotype. RESULTS: The age and APOE genotype model predicted amyloid status with an area under the curve (AUC) of 0.75. Three assays improved AUCs to 0.81, 0.81, and 0.84 (P < .05, uncorrected for multiple comparisons). DISCUSSION: Measurement of Aβ in plasma contributes to addressing the amyloid component of the ATN (amyloid/tau/neurodegeneration) framework and could be a first step before or in place of a PET or cerebrospinal fluid screening study. HIGHLIGHTS: The Foundation of the National Institutes of Health Biomarkers Consortium evaluated six plasma amyloid beta (Aβ) assays using Alzheimer's Disease Neuroimaging Initiative samples. Three assays improved prediction of amyloid status over age and apolipoprotein E (APOE) genotype. Plasma Aβ42/40 predicted amyloid positron emission tomography status better than Aβ42 or Aβ40 alone
Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania
Growth impairment is a major public health issue for children in Tanzania. The question remains as to whether dietary mycotoxins play a role in compromising children's growth. We examined children's exposures to dietary aflatoxin and fumonisin and potential impacts on growth in 114 children under 36 months of age in Haydom, Tanzania. Plasma samples collected from the children at 24 months of age (N = 60) were analyzed for aflatoxin B₁-lysine (AFB₁-lys) adducts, and urine samples collected between 24 and 36 months of age (N = 94) were analyzed for urinary fumonisin B₁ (UFB₁). Anthropometric, socioeconomic, and nutritional parameters were measured and growth parameter z-scores were calculated for each child. Seventy-two percent of the children had detectable levels of AFB₁-lys, with a mean level of 5.1 (95% CI: 3.5, 6.6) pg/mg albumin; and 80% had detectable levels of UFB₁, with a mean of 1.3 (95% CI: 0.8, 1.8) ng/ml. This cohort had a 75% stunting rate [height-for-age z-scores (HAZ) < −2] for children at 36 months. No associations were found between aflatoxin exposures and growth impairment as measured by stunting, underweight [weight-for-age z-scores (WAZ) < −2], or wasting [weight-for-height z-scores (WHZ) < −2]. However, fumonisin exposure was negatively associated with underweight (with non-detectable samples included, p = 0.0285; non-detectable samples excluded, p = 0.005) in this cohort of children. Relatively low aflatoxin exposure at 24 months was not linked with growth impairment, while fumonisin exposure at 24–36 months based on the UFB₁ biomarkers may contribute to the high growth impairment rate among children of Haydom, Tanzania; which may be associated with their breast feeding and weaning practices