142 research outputs found

    Synthesis and evaluation of new designed multiple ligands directed towards both peroxisome proliferator-activated receptor-γ and angiotensin II type 1 receptor

    Get PDF
    Because of the complex biological networks, many pathologic disorders fail to be treated with a molecule directed towards a single target. Thus, combination therapies are often necessary, but they have many drawbacks. An alternative consists in building molecules intended to interact with multiple targets, called designed multiple ligands. We followed such a strategy in order to treat metabolic syndrome, by setting up molecules directed towards both type 1 angiotensin II (AT1) receptor and peroxisome proliferator-activated receptor-γ (PPAR-γ). For this purpose, many molecules were prepared by merging both pharmacophores following three different strategies. Their ability to activate PPAR-γ and to block AT1 receptors were evaluated in vitro. This strategy led to the preparation of many new PPAR-γ activating and AT1 blocking molecules. Among them, some exhibited both activities, highlighting the convenience of this approach

    Влияние параметров одномассной системы с упругими ограничителями на характер ее колебаний

    Get PDF
    У статті розглянуто одномасну систему з пружними обмежувачами. Побудовано області існування різних режимів коливань системи, а також визначено вплив параметрів системи на межі цих областей.A one-mass system with elastic constraints is studied. Areas of existing of different oscillation modes are built. Also an influence of system parameters on limits of these areas is determined

    Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation.

    Get PDF
    Congenital disorders of glycosylation (CDG) are a heterogeneous and rapidly growing group of diseases caused by abnormal glycosylation of proteins and/or lipids. Mutations in genes involved in the homeostasis of the endoplasmic reticulum (ER), the Golgi apparatus (GA), and the vesicular trafficking from the ER to the ER-Golgi intermediate compartment (ERGIC) have been found to be associated with CDG. Here, we report a patient with defects in both N- and O-glycosylation combined with a delayed vesicular transport in the GA due to mutations in TRAPPC11, a subunit of the TRAPPIII complex. TRAPPIII is implicated in the anterograde transport from the ER to the ERGIC as well as in the vesicle export from the GA. This report expands the spectrum of genetic alterations associated with CDG, providing new insights for the diagnosis and the understanding of the physiopathological mechanisms underlying glycosylation disorders

    Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools

    Get PDF
    Intermittent rivers and ephemeral streams (IRES) – waterways in which flow ceases periodically or that dry completely – are found worldwide, and their frequency and extent are expected to increase in the future in response to global climate change and growing anthropogenic demand for fresh water. Repeated wet–dry cycles generate highly dynamic settings within river networks composed of aquatic and terrestrial habitats, which act as evolutionary triggers for aquatic and terrestrial biota. Drying also alters functions and processes within river networks, with consequences for ecosystem services. Despite the emergence of promising conceptual and methodological developments, our understanding of the occurrence and diversity of organisms in these ecosystems is limited primarily due to their coupled aquatic–terrestrial characteristics. Novel genomic tools based on high-throughput sequencing have the potential to tackle unanswered questions of pivotal importance to predict future change in IRES. Here, we outline why genomic tools are needed to assess these dynamic ecosystems from the population to the metacommunity scale, and their potential role in bridging ecological–evolutionary dynamics

    Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood–brain barrier impairment

    Get PDF
    Abstract Cerebral small vessel disease is characterised by decreased cerebral blood flow and blood–brain barrier impairments which play a key role in the development of white matter lesions. We hypothesised that cerebral hypoperfusion causes local hypoxia, affecting oligodendrocyte precursor cell—endothelial cell signalling leading to blood–brain barrier dysfunction as an early mechanism for the development of white matter lesions. Bilateral carotid artery stenosis was used as a mouse model for cerebral hypoperfusion. Pimonidazole, a hypoxic cell marker, was injected prior to humane sacrifice at day 7. Myelin content, vascular density, blood–brain barrier leakages, and hypoxic cell density were quantified. Primary mouse oligodendrocyte precursor cells were exposed to hypoxia and RNA sequencing was performed. Vegfa gene expression and protein secretion was examined in an oligodendrocyte precursor cell line exposed to hypoxia. Additionally, human blood plasma VEGFA levels were measured and correlated to blood–brain barrier permeability in normal-appearing white matter and white matter lesions of cerebral small vessel disease patients and controls. Cerebral blood flow was reduced in the stenosis mice, with an increase in hypoxic cell number and blood–brain barrier leakages in the cortical areas but no changes in myelin content or vascular density. Vegfa upregulation was identified in hypoxic oligodendrocyte precursor cells, which was mediated via Hif1α and Epas1. In humans, VEGFA plasma levels were increased in patients versus controls. VEGFA plasma levels were associated with increased blood–brain barrier permeability in normal appearing white matter of patients. Cerebral hypoperfusion mediates hypoxia induced VEGFA expression in oligodendrocyte precursor cells through Hif1α/Epas1 signalling. VEGFA could in turn increase BBB permeability. In humans, increased VEGFA plasma levels in cerebral small vessel disease patients were associated with increased blood–brain barrier permeability in the normal appearing white matter. Our results support a role of VEGFA expression in cerebral hypoperfusion as seen in cerebral small vessel disease

    Domain Organization of Long Signal Peptides of Single-Pass Integral Membrane Proteins Reveals Multiple Functional Capacity

    Get PDF
    Targeting signals direct proteins to their extra - or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization (“NtraC model”) in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals

    Fully human IgG and IgM antibodies directed against the carcinoembryonic antigen (CEA) Gold 4 epitope and designed for radioimmunotherapy (RIT) of colorectal cancers

    Get PDF
    BACKGROUND: Human monoclonal antibodies (MAbs) are needed for colon cancer radioimmunotherapy (RIT) to allow for repeated injections. Carcinoembryonic antigen (CEA) being the reference antigen for immunotargeting of these tumors, we developed human anti-CEA MAbs. METHODS: XenoMouse(®)-G2 animals were immunized with CEA. Among all the antibodies produced, two of them, VG-IgG2κ and VG-IgM, were selected for characterization in vitro in comparison with the human-mouse chimeric anti-CEA MAb X4 using flow cytometry, surface plasmon resonance, and binding to radiolabeled soluble CEA and in vivo in human colon carcinoma LS174T bearing nude mice. RESULTS: Flow cytometry analysis demonstrated binding of MAbs on CEA-expressing cells without any binding on NCA-expressing human granulocytes. In a competitive binding assay using five reference MAbs, directed against the five Gold CEA epitopes, VG-IgG2κ and VG-IgM were shown to be directed against the Gold 4 epitope. The affinities of purified VG-IgG2κ and VG-IgM were determined to be 0.19 ± 0.06 × 10(8 )M(-1 )and 1.30 ± 0.06 × 10(8 )M(-1), respectively, as compared with 0.61 ± 0.05 × 10(8 )M(-1 )for the reference MAb X4. In a soluble phase assay, the binding capacities of VG-IgG2κ and VG-IgM to soluble CEA were clearly lower than that of the control chimeric MAb X4. A human MAb concentration of about 10(-7 )M was needed to precipitate approximatively 1 ng (125)I-rhCEA as compared with 10(-9 )M for MAb X4, suggesting a preferential binding of the human MAbs to solid phase CEA. In vivo, 24 h post-injection, (125)I-VG-IgG2κ demonstrated a high tumor uptake (25.4 ± 7.3%ID/g), close to that of (131)I-X4 (21.7 ± 7.2%ID/g). At 72 h post-injection, (125)I-VG-IgG2κ was still concentrated in the tumor (28.4 ± 11.0%ID/g) whereas the tumor concentration of (131)I-X4 was significantly reduced (12.5 ± 4.8%ID/g). At no time after injection was there any accumulation of the radiolabeled MAbs in normal tissues. A pertinent analysis of VG-IgM biodistribution was not possible in this mouse model in which IgM displays a very short half-life due to poly-Ig receptor expression in the liver. CONCLUSION: Our human anti-CEA IgG2κ is a promising candidate for radioimmunotherapy in intact form, as F(ab')(2 )fragments, or as a bispecific antibody

    Induction of protein citrullination and auto-antibodies production in murine exposed to nickel

    Get PDF
    Abstract Citrullination, or the post-translational deimination of polypeptide-bound arginine, is involved in several pathological processes in the body, including autoimmunity and tumorigenesis. Recent studies have shown that nanomaterials can trigger protein citrullination, which might constitute a common pathogenic link to disease development. Here we demonstrated auto-antibody production in serum of nanomaterials-treated mice. Citrullination-associated phenomena and PAD levels were found to be elevated in nanomaterials -treated cell lines as well as in the spleen, kidneys and lymph nodes of mice, suggesting a systemic response to nanomaterials injection, and validated in human pleural and pericardial malignant mesothelioma (MM) samples. The observed systemic responses in mice exposed to nanomaterials support the evidence linking exposure to environmental factors with the development of autoimmunity responses and reinforces the need for comprehensive safety screening of nanomaterials. Furthermore, these nanomaterials induce pathological processes that mimic those observed in Pleural MM, and therefore require further investigations into their carcinogenicity

    Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH–Oligomannose-3 Complex

    Get PDF
    Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and alpha3beta1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections.We demonstrate that alpha-D-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl alpha-D-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl alpha-D-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl alpha-D-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Man alpha1,3Man beta1,4GlcNAc beta1,4GlcNAc in an extended binding site. The interactions along the alpha1,3 glycosidic bond and the first beta1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl alpha-D-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group.The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection
    corecore