38 research outputs found
Machine learning identifies a common signature for anti-SSA/Ro60 antibody expression across autoimmune diseases
Anti-Ro autoantibodies are among the most frequently detected extractable nuclear antigen autoantibodies, mainly associated with primary Sjögren's syndrome (pSS), systemic lupus erythematosus (SLE) and undifferentiated connective tissue disease (UCTD). Is there a common signature to all patients expressing anti-Ro60 autoantibodies regardless of their disease phenotype?Using high-throughput multi-omics data collected within the cross-sectional cohort from the PRECISESADS IMI project (genetic, epigenomic, transcriptomic, combined with flow cytometric data, multiplexed cytokines, classical serology and clinical data), we assessed by machine learning the integrated molecular profiling of 520 anti-Ro60-positive (anti-Ro60+ ) compared to 511 anti-Ro60-negative (anti-Ro60- ) patients with pSS, SLE and UCTD, and 279 healthy controls (HCs).The selected features for RNA-Seq, DNA methylation and GWAS data allowed a clear separation between anti-Ro60+ and anti-Ro60- patients. The different features selected by machine learning from the anti-Ro60+ patients constitute specific signatures when compared to anti-Ro60- patients and HCs. Remarkably, the transcript z-score of three genes (ATP10A, MX1 and PARP14), presenting an overexpression associated with a hypomethylation and genetic variation, and independently identified by the Boruta algorithm, was clearly higher in anti-Ro60+ patients compared to anti-Ro60- patients in all the diseases. We demonstrate that these signatures, enriched in interferon stimulated genes, were also found in anti-Ro60+ patients with rheumatoid arthritis and systemic sclerosis and remained stable over time and not influenced by treatment.Anti-Ro60+ patients present a specific inflammatory signature regardless of their disease suggesting that a dual therapeutic approach targeting both Ro-associated RNAs and anti-Ro60 autoantibodies should be considered
Association of Combined Anti-Ro52/TRIM21 and Anti-Ro60/SSA Antibodies With Increased Sjögren Disease Severity Through Interferon Pathway Activation
The biologic diagnosis of primary Sjögren disease (SjD) mainly relies on anti-Ro60/SSA antibodies, whereas the significance of anti-Ro52/TRIM21 antibodies currently remains unclear. The aim of this study was to characterize the clinical, serological, biologic, transcriptomic, and interferon profiles of patients with SjD according to their anti-Ro52/TRIM21 antibody status.Patients with SjD from the European PRECISESADS (n = 376) and the Brittany Diagnostic Suspicion of primitive Sjögren's Syndrome (DIApSS); (n = 146) cohorts were divided into four groups: double negative (Ro52-/Ro60-), isolated anti-Ro52/TRIM21 positive (Ro52+), isolated anti-Ro60/SSA positive (Ro60+), and double-positive (Ro52+/Ro60+) patients. Clinical information; EULAR Sjögren Syndrome Disease Activity Index, a score representing systemic activity; and biologic markers associated with disease severity were evaluated. Transcriptome data obtained from whole blood by RNA sequencing and type I and II interferon signatures were analyzed for PRECISESADS patients.In the DIApSS cohort, Ro52+/Ro60+ patients showed significantly more parotidomegaly (33.3% vs 0%-11%) along with higher β2-microglobulin (P = 0.0002), total immunoglobulin (P < 0.0001), and erythrocyte sedimentation rate levels (P = 0.002) as well as rheumatoid factor (RF) positivity (66.2% vs 20.8%-25%) compared to other groups. The PRECISESADS cohort corroborated these observations, with increased arthritis (P = 0.046), inflammation (P = 0.005), hypergammaglobulinemia (P < 0.0001), positive RF (P < 0.0001), leukopenia (P = 0.004), and lymphopenia (P = 0.009) in Ro52+/Ro60+ patients. Cumulative EULAR Sjögren Syndrome Disease Activity Index results further confirmed these disparities (P = 0.002). Transcriptome analysis linked anti-Ro52/TRIM21 antibody positivity to interferon pathway activation as an underlying cause for these clinical correlations.These results suggest that the combination of anti-Ro52/TRIM21 and anti-Ro60/SSA antibodies is associated with a clinical, biologic, and transcriptional profile linked to greater disease severity in SjD through the potentiation of the interferon pathway activation by anti-Ro52/TRIM21 antibodies
Association of combined anti-Ro52/TRIM21 and anti-Ro60/SSA antibodies with increased Sjögren disease severity through interferon pathway activation
Objective: The biologic diagnosis of primary Sjögren disease (SjD) mainly relies on anti-Ro60/SSA antibodies, whereas the significance of anti-Ro52/TRIM21 antibodies currently remains unclear. The aim of this study was to characterize the clinical, serological, biologic, transcriptomic, and interferon profiles of patients with SjD according to their anti-Ro52/TRIM21 antibody status. Methods: Patients with SjD from the European PRECISESADS (n = 376) and the Brittany Diagnostic Suspicion of primitive Sjögren's Syndrome (DIApSS); (n = 146) cohorts were divided into four groups: double negative (Ro52‾/Ro60‾), isolated anti-Ro52/TRIM21 positive (Ro52+), isolated anti-Ro60/SSA positive (Ro60+), and double-positive (Ro52+/Ro60+) patients. Clinical information; EULAR Sjögren Syndrome Disease Activity Index, a score representing systemic activity; and biologic markers associated with disease severity were evaluated. Transcriptome data obtained from whole blood by RNA sequencing and type I and II interferon signatures were analyzed for PRECISESADS patients. Results: In the DIApSS cohort, Ro52+/Ro60+ patients showed significantly more parotidomegaly (33.3% vs 0%?11%) along with higher β2-microglobulin (P =0.0002), total immunoglobulin (P <0.0001), and erythrocyte sedimentation rate levels (P =0.002) as well as rheumatoid factor (RF) positivity (66.2% vs 20.8%?25%) compared to other groups. The PRECISESADS cohort corroborated these observations, with increased arthritis (P =0.046), inflammation (P =0.005), hypergammaglobulinemia (P <0.0001), positive RF (P <0.0001), leukopenia (P =0.004), and lymphopenia (P =0.009) in Ro52+/Ro60+ patients. Cumulative EULAR Sjögren Syndrome Disease Activity Index results further confirmed these disparities (P =0.002). Transcriptome analysis linked anti-Ro52/TRIM21 antibody positivity to interferon pathway activation as an underlying cause for these clinical correlations. Conclusion: These results suggest that the combination of anti-Ro52/TRIM21 and anti-Ro60/SSA antibodies is associated with a clinical, biologic, and transcriptional profile linked to greater disease severity in SjD through the potentiation of the interferon pathway activation by anti-Ro52/TRIM21 antibodies.Funding: Supported by the Innovative Medicines Initiative Joint Undertaking (grant 115565 [PRECISESADS project]), resources of which include financial contribution from the European Union’s Seventh Framework Program (grant FP7/2007–2013) and EFPIA companies’ in-kind contribution. LBAI laboratory (Lymphocytes B, Auto-immunité et Immunothérapies) was supported by the Agence Nationale de la Recherche under the “Investissement d’Avenir” program (reference ANR-11-LABX-0016-001 [Labex IGO])
A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome
There is currently no approved treatment for primary Sjögren's syndrome, a disease that primarily affects adult women. The difficulty in developing effective therapies is -in part- because of the heterogeneity in the clinical manifestation and pathophysiology of the disease. Finding common molecular signatures among patient subgroups could improve our understanding of disease etiology, and facilitate the development of targeted therapeutics. Here, we report, in a cross-sectional cohort, a molecular classification scheme for Sjögren's syndrome patients based on the multi-omic profiling of whole blood samples from a European cohort of over 300 patients, and a similar number of age and gender-matched healthy volunteers. Using transcriptomic, genomic, epigenetic, cytokine expression and flow cytometry data, combined with clinical parameters, we identify four groups of patients with distinct patterns of immune dysregulation. The biomarkers we identify can be used by machine learning classifiers to sort future patients into subgroups, allowing the re-evaluation of response to treatments in clinical trials
Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter
Climate change and human pressures are changing the global distribution and extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56‐98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached organic matter. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events
Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter
Climate change and human pressures are changing the global distribution and the ex‐
tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the
global river network area. IRES are characterized by periods of flow cessation, during
which channel substrates accumulate and undergo physico‐chemical changes (precon‐
ditioning), and periods of flow resumption, when these substrates are rewetted and
release pulses of dissolved nutrients and organic matter (OM). However, there are no
estimates of the amounts and quality of leached substances, nor is there information
on the underlying environmental constraints operating at the global scale. We experi‐
mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐
bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES
from five major climate zones. We determined the amounts and qualitative character‐
istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds.
In addition, we evaluated the variance in leachate characteristics in relation to selected
environmental variables and substrate characteristics. We found that sediments, due
to their large quantities within riverbeds, contribute most to the overall flux of dis‐
solved substances during rewetting events (56%–98%), and that flux rates distinctly
differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐
uted most to the areal fluxes. The largest amounts of leached substances were found
in the continental climate zone, coinciding with the lowest potential bioavailability of
the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐
ables expected to be modified under climate change (i.e. potential evapotranspiration,
aridity, dry period duration, land use) were correlated with the amount of leached sub‐
stances, with the strongest relationship found for sediments. These results show that
the role of IRES should be accounted for in global biogeochemical cycles, especially
because prevalence of IRES will increase due to increasing severity of drying event
How Health Information Technologies and Artificial Intelligence May Help Rheumatologists in Routine Practice
International audienc
New criteria and new methodological tools for devising criteria sets of inflammatory rheumatic diseases.
International audienceRheumatologists use classification criteria to separate patients with inflammatory rheumatic diseases (IRD). They change over time, and the concepts of the diseases also change. The paradigm is currently moving as the goal of classification in the future will be more to select which patients may be relevant for a specific treatment rather than to describe their characteristics. Therefore, the challenge will be to reclassify multifactorial diseases on the basis of their biological mechanisms rather than their clinical phenotype. Currently, various projects are trying to reclassify diseases using bioinformatics approaches and in the near future the use of advanced machine learning algorithms with large omics datasets could lead to new classification models not only based on a clinical phenotype but also on complex biological profile and common sensitivity to targeted treatment. These models would highlight common biological pathways between patients classified in the same cluster and provide a deep understanding of the mechanisms involved in the patient's clinical phenotype. Such approaches would ultimately lead to classification models that rely more on biological causes than on symptoms. This overview on current classification of subgroups of IRD summarises the classification criteria that we use routinely, and how we will classify IRD in the future using bioinformatics and artificial intelligence techniques
New criteria and new methodological tools for devising criteria sets of inflammatory rheumatic diseases.
International audienceRheumatologists use classification criteria to separate patients with inflammatory rheumatic diseases (IRD). They change over time, and the concepts of the diseases also change. The paradigm is currently moving as the goal of classification in the future will be more to select which patients may be relevant for a specific treatment rather than to describe their characteristics. Therefore, the challenge will be to reclassify multifactorial diseases on the basis of their biological mechanisms rather than their clinical phenotype. Currently, various projects are trying to reclassify diseases using bioinformatics approaches and in the near future the use of advanced machine learning algorithms with large omics datasets could lead to new classification models not only based on a clinical phenotype but also on complex biological profile and common sensitivity to targeted treatment. These models would highlight common biological pathways between patients classified in the same cluster and provide a deep understanding of the mechanisms involved in the patient's clinical phenotype. Such approaches would ultimately lead to classification models that rely more on biological causes than on symptoms. This overview on current classification of subgroups of IRD summarises the classification criteria that we use routinely, and how we will classify IRD in the future using bioinformatics and artificial intelligence techniques