8 research outputs found

    Significance of Devonian-Carboniferous igneous activity in Tasmania as derived from U-PbSHRIMP dating of zircon

    No full text
    A series of new Sensitive High-Resolution Ion MicroProbe (SHRIMP) U-Pb ages is presented for Palaeozoic (mainly Devonian and Carboniferous) granites from Tasmania. In virtually all instances the new ages are significantly older than previously determine

    The application of SHRIMP to Phanerozoic geochronology: a critical appraisal of four zircon standards

    No full text
    Derivation of Phanerozoic zircon206Pb/238U ages by SHRIMP depends on calibration against an independently dated standard. The qualities of four different zircon standards (SL13, QGNG, AS3 and TEMORA 1) are assessed herein. Not all of these behave consistently on SHRIMP with respect to their ages as determined by IDTIMS. SL13, the most commonly used standard over the past decade and a half, is the most heterogeneous in Pb/U. In addition, when SL13 is used as the calibration standard, the varied ages resulting from that heterogeneity are generally younger than ages derived from the other three standards. AS3-calibrated ages are the oldest of the group. Only QGNG and TEMORA 1, when calibrated relative to each other, yield ages on SHRIMP that are consistent with their IDTIMS ages. Of these two, TEMORA 1 has the distinct advantage of producing consistent IDTIMS ages at high precision. Because of these factors and its availability, we recommend its use in geological studies where precise and accurate Pb/U zircon ages are imperative. Approximate conversion factors have been derived to improve quantitative inter-comparison between SHRIMP ages that have been calibrated against the different standards. These refinements significantly advance the role that SHRIMP can play in the numerical calibration of the Phanerozoic timescale

    Controls on Devonian-Carboniferous magmatism in Tasmania, based on inherited zircon age patterns, Sr, Nd and Pb isotopes, and major and trace element geochemistry

    No full text
    Devonian-Carboniferous granites are widespread in Tasmania. In eastern Tasmania, Devonian granites intrude Ordovician-Early Devonian quartz-rich turbidites of the Mathinna Supergroup. The earliest (~400 Ma) I-type granodiorites may be arc-related. Following the Tabberabberan Orogeny (~389 Ma), more felsic and, finally, strongly fractionated I- and S-type granites were emplaced until ~373 Ma. In contrast, western Tasmania granites intrude a more diverse terrane of predominantly marine shelf successions, with depositional ages as old as Late Mesoproterozoic. They are mostly felsic and fractionated I- and S-types emplaced from ~374-351 Ma, possibly in response to post-collisional crustal extension following juxtaposition of the eastern and western Tasmanian terranes. Granites from the two terranes are readily distinguishable by the age spectra of their inherited zircon, which are noticeably similar to those of the detrital zircon from sedimentary successions in their respective terranes. Furthermore, within each terrane, both I and S-types yield similar inheritance patterns. This suggests a pivotal role for the sedimentary successions in the petrogenesis of both types. Western Tasmanian granites are also enriched in ~1600 Ma zircon, which is essentially unrepresented in the exposed supracrustal succession. Subtle differences between the inheritance and detrital age spectra in eastern Tasmania probably relate to unrepresentative sampling of the supracrustal rocks. Nd, Sr and Pb isotopic characteristics of the granites are consistent with their derivation by mixing of magmas derived from the mantle, possibly the lower crust, and from supracrustal rocks. Systematic isotopic trends in some eastern Tasmanian I-types, particularly in the Scottsdale Batholith, correlate well with major and trace element geochemistry and age. The isotopes are inconsistent with simple restite unmixing or crystal fractionation in a closed magma chamber, and indicate progressive contamination by the Mathinna Supergroup, or similar rocks. The isotopic characteristics of late, strongly fractionated granites, although sometimes obscured by hydrothermal alteration, are also consistent with concurrent assimilation-fractional crystallisation processes. Together with the close association of some strongly fractionated I- and S-types, this suggests that such granites were generated directly in the lower crust, and were not derived from unfractionated parental granite magmas

    TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology

    No full text
    The role of the standard is critical to the derivation of reliable U-Pb zircon ages by micro-beam analysis. For maximum reliability, it is critically important that the utilised standard be homogeneous at all scales of analysis. It is equally important that the standard has been precisely and accurately dated by an independent technique. This study reports the emergence of a new zircon standard that meets those criteria, as demonstrated by Sensitive High Resolution Ion MicroProbe (SHRIMP), isotope dilution thermal ionisation mass-spectrometry (IDTIMS) and excimer laser ablation- inductively coupled plasma-mass-spectrometry (ELA-ICP-MS) documentation. The TEMORA 1 zircon standard derives from the Middledale Gabbroic Diorite, a high-level mafic stock within the Palaeozoic Lachlan Orogen of eastern Australia. Its206Pb/238U IDTIMS age has been determined to be 416.75±0.24 Ma (95% confidence limits), based on measurement errors alone. Spike-calibration uncertainty limits the accuracy to 416.8±1.1 Ma for U-Pb intercomparisons between different laboratories that do not use a common spike

    Geochronology and provenance of the Late Paleozoic accretionary wedge and Gympie Terrane, New England Orogen, eastern Australia

    No full text
    In easternmost Australia, the New England Orogen contains a geological record dominated by subduction-related rocks, with plate convergence during the Late Devonian to Triassic being related to a west-dipping subduction system, assuming present-day orientation, at the boundary of eastern Gondwanaland and the Panthalassan Ocean. A well-preserved Late Paleozoic accretionary wedge contains deep-marine turbidites deposited as trench fill, plus infaulted slices of oceanic crust. The turbidites are mostly first-cycle, immature, quartz-poor, volcanic-derived sedimentary rocks, some of which contain detrital hornblende, along with less-common quartz-rich sandstones to the east. In this study, detrital zircons from sandstones in various tectonic blocks of the New England Orogen are dated by the U-Pb SHRIMP and LA-ICPMS techniques and detrital hornblendes by the Ar-Ar technique to constrain the age and provenance of sedimentary rocks in the accretionary wedge. All samples, except two quartz-rich sandstones from the northern Shoalwater Formation, have maximum depositional ages of 355-316 Ma, indicating that the accretionary wedge evolved over a period of at least 40 Ma, with principal sources from a contemporaneous active continental margin volcanic arc. Quartz-rich sandstones from the easternmost part of the accretionary wedge (Shoalwater Formation and eastern Beenleigh Block) contain a greater range of individual detrital zircon ages from Late Paleozoic to Archean (several individual grains >3000 Ma). These ages indicate that, although detritus from Carboniferous volcanic arc sources was involved, quartz-rich detritus mostly derived from the continental interior dominated the depocentres. We suggest that these quartz-rich sandstones accumulated from longitudinal transport along the trench, like the modern-day Barbados Ridge accretionary wedge, along with breaching of the marginal arc by streams draining the continental interior.31 page(s

    Improved 206 Pb/ 238 U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards

    No full text
    Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crow
    corecore