9 research outputs found
Improving the predictive quality of time‐dependent density functional theory calculations of the X‐ray emission spectroscopy of organic molecules
The simulation of x-ray emission spectra of organic molecules using time-dependent density functional theory (TDDFT) is explored. TDDFT calculations using standard hybrid exchange-correlation functionals in conjunction with large basis sets can predict accurate X-ray emission spectra provided an energy shift is applied to align the spectra with experiment. The relaxation of the orbitals in the intermediate state is an important factor, and neglect of this relaxation leads to considerably poorer predicted spectra. A short-range corrected functional is found to give emission energies that required a relatively small energy shift to align with experiment. However, increasing the amount of Hartree-Fock exchange in this functional to remove the need for any energy shift led to a deterioration in the quality of the calculated spectral profile. To predict accurate spectra without reference to experimental measurements, we use the CAM-B3LYP functional with the energy scale determined with reference to a ∆self-consistent field (SCF) calculation for the highest energy emission transition
Simulation of ultra-fast dynamics effects in resonant inelastic x-ray scattering of gas-phase water
Resonant inelastic soft X-ray scattering maps for the water molecule are simulated by combining quantum chemical calculations of X-ray spectroscopy with ab initio molecular dynamics. The resonant inelastic scattering intensity is computed using the Kramers–Heisenberg formalism, which accounts for channel interference and polarization anisotropy. Algebraic diagrammatic construction and density functional theory-based approaches for the calculation of the X-ray transition energies and transition dipole moments of the absorption and emission processes are explored. Conformational sampling of both ground and core-excited intermediate states allows the effects of ultrafast dynamics on the computed maps to be studied. Overall, it is shown how resonant inelastic scattering maps can be simulated with a computationally efficient protocol that can be extended to investigate larger systems
X-ray induced electron and ion fragmentation dynamics in IBr
Characterization of the inner-shell decay processes in molecules containing
heavy elements is key to understanding x-ray damage of molecules and materials
and for medical applications with Auger-electron-emitting radionuclides. The 1s
hole states of heavy atoms can be produced by absorption of tunable x-rays and
the resulting vacancy decays characterized by recording emitted photons,
electrons, and ions. The 1s hole states in heavy elements have large x-ray
fluorescence yields that transfer the hole to intermediate electron shells that
then decay by sequential Auger-electron transitions that increase the ion's
charge state until the final state is reached. In molecules the charge is
spread across the atomic sites, resulting in dissociation to energetic atomic
ions. We have used x-ray/ion coincidence spectroscopy to measure charge states
and energies of I and Br atomic ions following 1s ionization at
the I and Br \textit{K}-edges of IBr. We present the charge states and kinetic
energies of the two correlated fragment ions associated with core-excited
states produced during the various steps of the cascades. To understand the
dynamics leading to the ion data, we develop a computational model that
combines Monte-Carlo/Molecular Dynamics simulations with a classical
over-the-barrier model to track inner-shell cascades and redistribution of
electrons in valence orbitals and nuclear motion of fragments
Positive Selection of Plasmodium falciparum Parasites With Multiple var2csa-Type PfEMP1 Genes During the Course of Infection in Pregnant Women
Placental malaria infections are caused by Plasmodium falciparum–infected red blood cells sequestering in the placenta by binding to chondroitin sulfate A, mediated by VAR2CSA, a variant of the PfEMP1 family of adhesion antigens. Recent studies have shown that many P. falciparum genomes have multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes enables P. falciparum parasites to persist for a longer period of time during placental infections, probably because of their greater capacity for antigenic variation and evasion of variant-specific immune responses
Long-term neurological symptoms after acute COVID-19 illness requiring hospitalization in adult patients: insights from the ISARIC-COVID-19 follow-up study
in this study we aimed to characterize the type and prevalence of neurological symptoms related to neurological long-COVID-19 from a large international multicenter cohort of adults after discharge from hospital for acute COVID-19
Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms
Background: COVID-19 is primarily known as a respiratory illness; however, many patients present to hospital without respiratory symptoms. The association between non-respiratory presentations of COVID-19 and outcomes remains unclear. We investigated risk factors and clinical outcomes in patients with no respiratory symptoms (NRS) and respiratory symptoms (RS) at hospital admission. Methods: This study describes clinical features, physiological parameters, and outcomes of hospitalised COVID-19 patients, stratified by the presence or absence of respiratory symptoms at hospital admission. RS patients had one or more of: cough, shortness of breath, sore throat, runny nose or wheezing; while NRS patients did not. Results: Of 178,640 patients in the study, 86.4 % presented with RS, while 13.6 % had NRS. NRS patients were older (median age: NRS: 74 vs RS: 65) and less likely to be admitted to the ICU (NRS: 36.7 % vs RS: 37.5 %). NRS patients had a higher crude in-hospital case-fatality ratio (NRS 41.1 % vs. RS 32.0 %), but a lower risk of death after adjusting for confounders (HR 0.88 [0.83-0.93]). Conclusion: Approximately one in seven COVID-19 patients presented at hospital admission without respiratory symptoms. These patients were older, had lower ICU admission rates, and had a lower risk of in-hospital mortality after adjusting for confounders