41 research outputs found

    Current and Future Drug Targets in Weight Management

    Get PDF
    Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investigated. However, pharmacological modulation of body weight is extremely complex, since it is essentially a battle against one of the strongest human instincts and highly efficient mechanisms of energy uptake and storage. This review provides an overview of the different molecular strategies intended to lower body weight or adipose tissue mass. Weight-loss drugs in development include molecules intended to reduce the absorption of lipids from the GI tract, various ways to limit food intake, and compounds that increase energy expenditure or reduce adipose tissue size. A number of new preparations, including combinations of the existing drugs topiramate plus phentermine, bupropion plus naltrexone, and the selective 5-HT2C agonist lorcaserin have recently been filed for approval. Behind these leading candidates are several other potentially promising compounds and combinations currently undergoing phase II and III testing. Some interesting targets further on the horizon are also discussed

    Response to Lapkoff and Sittig

    No full text

    Synthesis and Evaluation of the Metabolites of AMG 221, a Clinical Candidate for the Treatment of Type 2 Diabetes

    No full text
    All eight of the major active metabolites of (<i>S</i>)-2-((1<i>S</i>,2<i>S</i>,4<i>R</i>)-bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5<i>H</i>)-one (AMG 221, compound <b>1</b>), an inhibitor of 11β-hydroxysteroid dehydrogenase type 1 that has entered the clinic for the treatment of type 2 diabetes, were synthetically prepared and confirmed by comparison with samples generated in liver microsomes. After further profiling, we determined that metabolite <b>2</b> was equipotent to <b>1</b> on human 11β-HSD1 and had lower in vivo clearance and higher bioavailability in rat and mouse. Compound <b>2</b> was advanced into a pharmacodynamic model in mouse where it inhibited adipose 11β-HSD1 activity
    corecore