3 research outputs found

    Developing a Caenorhabditis elegans Model for Marfan Syndrome

    Get PDF
    Marfan Syndrome (MFS) is one of the most common monogenic diseases and affects approximately 1 in 5,000 individuals worldwide. The syndrome is characterized by elongated extremities, tall stature, slender frame, and cardiac, and vision abnormalities due to severe connective tissue defects. It is caused by mutations in the fbn1 gene, which encodes an extracellular matrix glycoprotein, and is required for proper cardiac and skeletal development and for sequestration of TGFβ (transforming growth factor beta) and BMP (bone morphogenetic protein) within the extracellular matrix (ECM). The primary objective of this study was to establish a C.elegans MFS model and use this model to determine which genes interact with a C.elegans fbn1 homolog, MUA-3 and ascertain the role of metabolic rate in the development of MFS pathology. We isolated a temperature sensitive mutant of mua-3, a fbn1 homolog. We found that at the fourth larval molt, when animals shed the exoskeleton and rebuild a new one, the mutants die due to extensive mechanical stress in connective tissue shown as fragmented internal structures. Using this mutant, an unbiased forward genetic screen to isolate the genetic interactors of the fibrillin gene homolog, was completed. A collagen gene, that has been implicated to genetically interact with a bone morphogenetic protein (BMP), was isolated. This suggests that mua-3(uy19) may interact with genes involved in TGFβ regulation during the L4 molt and that fibrillin-1, TGF-β, and metalloproteases may act in-concert to modulate TGFβ availability and connective tissue integrity in C. elegans. In addition, we found that two independent mutations of mua-3 show temperature-sensitive phenotypes. Based on this result, we propose that increase of temperature aggravates the phenotype potentially due to increased metabolism. This hypothesis, if correct, will suggest a potential connection between metabolic rate and severity of MFS pathology

    DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome

    Get PDF
    mua-3 is a Caenorhabditis elegans homolog of the mammalian fibrillin1, a monogenic cause of Marfan syndrome. We identified a new mutation of mua-3 that carries an in-frame deletion of 131 amino acids in the extracellular domain, which allows the mutants to survive in a temperature-dependent manner; at the permissive temperature, the mutants grow normally without obvious phenotypes, but at the nonpermissive temperature, more than 90% die during the L4 molt due to internal organ detachment. Using the temperature-sensitive lethality, we performed unbiased genetic screens to isolate suppressors to find genetic interactors of MUA-3. From two independent screens, we isolated mutations in dpy-17 as a suppressor. RNAi of dpy-17 in mua-3 rescued the lethality, confirming dpy-17 is a suppressor. dpy-17 encodes a collagen known to genetically interact with dpy-31, a BMP-1/Tolloid-like metalloprotease required for TGFβ activation in mammals. Human fibrillin1 mutants fail to sequester TGFβ2 leading to excess TGFβ signaling, which in turn contributes to Marfan syndrome or Marfan-related syndrome. Consistent with that, RNAi of dbl-1, a TGFβ homolog, modestly rescued the lethality of mua-3 mutants, suggesting a potentially conserved interaction between MUA-3 and a TGFβ pathway in C. elegans. Our work provides genetic evidence of the interaction between TGFβ and a fibrillin homolog, and thus provides a simple yet powerful genetic model to study TGFβ function in development of Marfan pathology

    DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome

    Get PDF
    mua-3 is a Caenorhabditis elegans homolog of the mammalian fibrillin1, a monogenic cause of Marfan syndrome. We identified a new mutation of mua-3that carries an in-frame deletion of 131 amino acids in the extracellular domain, which allows the mutants to survive in a temperature-dependent manner; at the permissive temperature, the mutants grow normally without obvious phenotypes, but at the nonpermissive temperature, more than 90% die during the L4 molt due to internal organ detachment. Using the temperature-sensitive lethality, we performed unbiased genetic screens to isolate suppressors to find genetic interactors of MUA-3. From two independent screens, we isolated mutations in dpy-17 as a suppressor. RNAi of dpy-17 inmua-3 rescued the lethality, confirming dpy-17 is a suppressor. dpy-17encodes a collagen known to genetically interact with dpy-31, a BMP-1/Tolloid-like metalloprotease required for TGFβ activation in mammals. Human fibrillin1 mutants fail to sequester TGFβ2 leading to excess TGFβ signaling, which in turn contributes to Marfan syndrome or Marfan-related syndrome. Consistent with that, RNAi of dbl-1, a TGFβ homolog, modestly rescued the lethality of mua-3 mutants, suggesting a potentially conserved interaction between MUA-3 and a TGFβ pathway in C. elegans. Our work provides genetic evidence of the interaction between TGFβ and a fibrillin homolog, and thus provides a simple yet powerful genetic model to study TGFβ function in development of Marfan pathology
    corecore