106 research outputs found

    Reliability of videotaped observational gait analysis in patients with orthopedic impairments

    Get PDF
    BACKGROUND: In clinical practice, visual gait observation is often used to determine gait disorders and to evaluate treatment. Several reliability studies on observational gait analysis have been described in the literature and generally showed moderate reliability. However, patients with orthopedic disorders have received little attention. The objective of this study is to determine the reliability levels of visual observation of gait in patients with orthopedic disorders. METHODS: The gait of thirty patients referred to a physical therapist for gait treatment was videotaped. Ten raters, 4 experienced, 4 inexperienced and 2 experts, individually evaluated these videotaped gait patterns of the patients twice, by using a structured gait analysis form. Reliability levels were established by calculating the Intraclass Correlation Coefficient (ICC), using a two-way random design and based on absolute agreement. RESULTS: The inter-rater reliability among experienced raters (ICC = 0.42; 95%CI: 0.38–0.46) was comparable to that of the inexperienced raters (ICC = 0.40; 95%CI: 0.36–0.44). The expert raters reached a higher inter-rater reliability level (ICC = 0.54; 95%CI: 0.48–0.60). The average intra-rater reliability of the experienced raters was 0.63 (ICCs ranging from 0.57 to 0.70). The inexperienced raters reached an average intra-rater reliability of 0.57 (ICCs ranging from 0.52 to 0.62). The two expert raters attained ICC values of 0.70 and 0.74 respectively. CONCLUSION: Structured visual gait observation by use of a gait analysis form as described in this study was found to be moderately reliable. Clinical experience appears to increase the reliability of visual gait analysis

    Repeatability of Corticospinal and Spinal Measures during Lengthening and Shortening Contractions in the Human Tibialis Anterior Muscle

    Get PDF
    Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures

    Thermally Induced Migration of Hydrocarbon Oil

    No full text

    Patterned Sensory Stimulation Induces Plasticity in Reciprocal Ia Inhibition in Humans

    No full text
    Training of spinal cord circuits using sensorimotor stimulation has been proposed as a strategy to improve movement after spinal injury. How sensory stimulation may lead to long-lasting changes is not well understood. We studied whether sensory stimulation might induce changes in the strength of a specific spinal interneuronal circuit: spinally mediated reciprocal Ia inhibition. In healthy humans, the strength of reciprocal inhibition between ankle flexor and extensor muscles was assessed before and after 30 min of peroneal nerve stimulation at motor threshold intensity. Three stimulation protocols were assessed: patterned nerve stimulation (10 pulses at 100 Hz every 1.5 sec), uniform nerve stimulation (one pulse every 150 msec), and combined stimulation of the peroneal nerve and the motor cortex with transcranial magnetic stimulation. Short-latency reciprocal inhibition from ankle flexor to extensor muscles was measured by conditioning the soleus H-reflex with stimulation of the common peroneal nerve. The strength of the reciprocal inhibition was measured at baseline and for 20 min after each stimulation session. Patterned stimulation, with or without motor cortex stimulation, enhanced reciprocal inhibition for at least 5 min afterward. The uniform pattern of stimulation was ineffective. These results demonstrate the presence of short-term plasticity within spinal inhibitory circuits. We conclude that the pattern of sensory input is a crucial factor for inducing changes in the spinal circuit for reciprocal inhibition in humans. These findings may have implications for the use of repetitive patterned sensory stimulation in rehabilitative efforts to improve walking ability in patients with spinal injury

    Metabolic responses to 4 different body weight-supported locomotor training approaches in persons with incomplete spinal cord injury

    No full text
    To describe metabolic responses accompanying 4 different locomotor training (LT) approaches. Single-blind, randomized controlled trial. Rehabilitation research laboratory, academic medical center. Individuals (N=62) with minimal walking function due to chronic motor-incomplete spinal cord injury. Participants trained 5 days/week for 12 weeks. Groups were treadmill-based LT with manual assistance (TM), transcutaneous electrical stimulation (TS), and a driven gait orthosis (DGO) and overground (OG) LT with electrical stimulation. Oxygen uptake (V˙o2), walking velocity and economy, and substrate utilization during subject-selected "slow," "moderate," and "maximal" walking speeds. V˙o2 did not increase from pretraining to posttraining for DGO (.00 ± .18L/min, P=.923). Increases in the other groups depended on walking speed, ranging from .01 ± .18 m/s (P=.860) for TM (slow speed) to .20 ± .29 m/s (P=.017) for TS (maximal speed). All groups increased velocity but to varying degrees (DGO, .01 ± .18 Ln[m/s], P=.829; TM, .07 ± .29 Ln[m/s], P=.371; TS, .33 ± .45 Ln[m/s], P=.013; OG, .52 ±.61 Ln[m/s], P=.007). Changes in walking economy were marginal for DGO and TM (.01 ± .20 Ln[L/m], P=.926, and .00 ± .42 Ln[L/m], P=.981) but significant for TS and OG (.26 ± .33 Ln[L/m], P=.014, and .44 ± .62 Ln[L/m], P=.025). Many participants reached respiratory exchange ratios ≥ 1 at any speed, rendering it impossible to statistically discern differences in substrate utilization. However, after training, fewer participants reached this ceiling for each speed (slow: 9 vs 6, n=32; moderate: 12 vs 8, n=29; and maximal 15 vs 13, n=28). DGO and TM walking training was less effective in increasing V˙o2 and velocity across participant-selected walking speeds, while TS and OG training was more effective in improving these parameters and also walking economy. Therefore, the latter 2 approaches hold greater promise for improving clinically relevant outcomes such as enhanced endurance, functionality, or in-home/community ambulation
    • …
    corecore