25,211 research outputs found

    Universality of collapsing two-dimensional self-avoiding trails

    Full text link
    Results of a numerically exact transfer matrix calculation for the model of Interacting Self-Avoiding Trails are presented. The results lead to the conclusion that, at the collapse transition, Self-Avoiding Trails are in the same universality class as the O(n=0) model of Blote and Nienhuis (or vertex-interacting self-avoiding walk), which has thermal exponent ν=12/23\nu=12/23, contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9 pages; 3 figure

    Variable mixer propulsion cycle

    Get PDF
    A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings

    M-grid: Using Ubiquitous Web Technologies to create a Computational Grid

    Full text link
    There are many potential users and uses for grid computing. However, the concept of sharing computing resources excites security concerns and, whilst being powerful and flexible, at least for novices, existing systems are complex to install and use. Together these represent a significant barrier to potential users who are interested to see what grid computing can do. This paper describes m-grid, a system for building a computational grid which can accept tasks from any user with access to a web browser and distribute them to almost any machine with access to the internet and manages to do this without the installation of additional software or interfering with existing security arrangements

    Observer based feedback control of 3rd order LCC resonant converters

    Get PDF
    The paper considers specific issues related to the design and realisation of observer-based feedback of isolated output voltage for resonant power converters. To provide a focus to the study, a 3rd order LCC converter is employed as a candidate topology. It is shown that whilst resonant converters nominally operate at high switching frequencies to facilitate the use of small reactive components, by appropriate pre-conditioning of non-isolated resonant-tank voltages and currents, the resulting observer can be implemented at relatively low sampling frequencies, and hence, take advantage of low-cost digital hardware. Experimental results are used to demonstrate the accuracy of observer estimates under both transient and steady-state operating conditions, and to show operation of the observer as part of a closed-loop feedback system where the LCC resonant converter is used as a regulated power supply

    Cyclic-averaging for high-speed analysis of resonant converters

    Get PDF
    Abstract—The paper describes the development and application of a cyclic-averaging technique for the rapid analysis of high-order resonant power converters. To provide a focus to the paper, particular emphasis is given to a 3rd-order LCC voltage output converter topology. The proposed methodology predicts steady-state voltages and currents throughout the circuit, and provides estimates of the stresses on the resonant circuit components. State-space simulations and experimental results from a 350 V-input/150 V-output converter are used to demonstrate a prediction accuracy comparable with time-domain integration-based techniques is achievable, while requiring only 1/10,000th of the computation time. In addition, a comparison with Spice simulation results shows that cyclic averaging provides commensurate predictions of voltage and current stresses on the resonant circuit components. Issues arising from the stray capacitance associated with the resonant inductor, and the corresponding sensitivity of the predicted output voltage, are also considered

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs
    • …
    corecore