2,799 research outputs found
A bimodal correlation between host star chromospheric emission and the surface gravity of hot Jupiters
The chromospheric activity index logR'HK of stars hosting transiting hot
Jupiters appears to be correlated with the planets' surface gravity. One of the
possible explanations is based on the presence of condensations of planetary
evaporated material located in a circumstellar cloud that absorbs the CaII H&K
and MgII h&k resonance line emission flux, used to measure chromospheric
activity. A larger column density in the condensations, or equivalently a
stronger absorption in the chromospheric lines, is obtained when the
evaporation rate of the planet is larger, which occurs for a lower gravity of
the planet. We analyze here a sample of stars hosting transiting hot Jupiters
tuned in order to minimize systematic effects (e.g., interstellar medium
absorption). Using a mixture model, we find that the data are best fit by a
two-linear-regression model. We interpret this result in terms of the
Vaughan-Preston gap. We use a Monte Carlo approach to best take into account
the uncertainties, finding that the two intercepts fit the observed peaks of
the distribution of logR'HK for main-sequence solar-like stars. We also find
that the intercepts are correlated with the slopes, as predicted by the model
based on the condensations of planetary evaporated material. Our findings bring
further support to this model, although we cannot firmly exclude different
explanations. A precise determination of the slopes of the two linear
components would allow one to estimate the average effective stellar flux
powering planetary evaporation, which can then be used for theoretical
population and evolution studies of close-in planets.Comment: 23 pages, 4 figures, 1 table, accepted for publication in ApJ
On the consistency of magnetic field measurements of Ap stars: lessons learned from the FORS1 archive
CONTEXT. The ESO archive of FORS1 spectropolarimetric observations may be
used to create a homogeneous database of magnetic field measurements. However,
no systematic comparison of FORS field measurements to those obtained with
other instruments has been undertaken so far. AIMS. We exploit the FORS archive
of circular spectropolarimetric data to examine in a general way how reliable
and accurate field detections obtained with FORS are. METHODS. We examine the
observations of Ap and Bp stars, on the grounds that almost all of the
unambiguous detections of magnetic fields in the FORS1 archive are in these
kinds of stars. We assess the overall quality of the FORS1 magnetic data by
examining the consistency of field detections with what is known from previous
measurements obtained with other instruments, and we look at patterns of
internal consistency. RESULTS. FORS1 magnetic measurements are fully consistent
with those made with other instruments, and the internal consistency of the
data is excellent. However, it is important to recognise that each choice of
grism and wavelength window constitutes a distinct instrumental measuring
system, and that simultaneous field measurements in different instrumental
systems may produce field strength values that differ up to 20 %, or more.
Furthermore, we found that field measurements using hydrogen lines only yield
results that meaningfully reflect the field strength as sampled specifically by
lines of hydrogen for stars with effective temperatures above about 9000 K.
CONCLUSIONS. In general the magnetic field measurements of Ap and Bp stars
obtained with FORS1 are of excellent quality, accuracy and precision, and FORS1
provides an extremely useful example that offers valuable lessons for field
measurements with other low- resolution Cassegrain spectropolarimeters.Comment: 14 pages, 8 figures. Accepted for publication in section 13 of
Astronomy & Astrophysics on 13 October 201
The FORS1 catalogue of stellar magnetic field measurements
The FORS1 instrument on the ESO Very Large Telescope was used to obtain
low-resolution circular polarised spectra of nearly a thousand different stars,
with the aim of measuring their mean longitudinal magnetic fields. A catalogue
of FORS1 magnetic measurements would provide a valuable resource with which to
better understand the strengths and limitations of this instrument and of
similar low-dispersion, Cassegrain spectropolarimeters. However, FORS1 data
reduction has been carried out by a number of different groups using a variety
of reduction and analysis techniques. Our understanding of the instrument and
our data reduction techniques have both improved over time. A full re-analysis
of FORS1 archive data using a consistent and fully documented algorithm would
optimise the accuracy and usefulness of a catalogue of field measurements.
Based on the ESO FORS pipeline, we have developed a semi-automatic procedure
for magnetic field determinations, which includes self-consistent checks for
field detection reliability. We have applied our procedure to the full content
of circular spectropolarimetric measurements of the FORS1 archive. We have
produced a catalogue of spectro-polarimetric observations and magnetic field
measurements for about 1400 observations of about 850 different objects. The
spectral type of each object has been accurately classified. We have also been
able to test different methods for data reduction is a systematic way. The
resulting catalogue has been used to produce an estimator for an upper limit to
the uncertainty in a field strength measurement of an early type star as a
function of the signal-to-noise ratio of the observation. While FORS1 is not
necessarily an optimal instrument for the discovery of weak magnetic fields, it
is very useful for the systematic study of larger fields, such as those found
in Ap/Bp stars and in white dwarfs.Comment: Accepted for publication by A&
Detection of magnetic field in the B2 star Oph A with ESO FORS2
Circumstantial evidence suggests that magnetism and enhanced X-ray emission
are likely correlated in early B-type stars: similar fractions of them (
10 %) are strong and hard X-ray sources and possess strong magnetic fields. It
is also known that some B-type stars have spots on their surface. Yet up to now
no X-ray activity associated with spots on early-type stars was detected. In
this Letter we report the detection of a magnetic field on the B2V star
Oph A. Previously, we assessed that the X-ray activity of this star is
associated with a surface spot, herewith we establish its magnetic origin. We
analyzed FORS2 ESO VLT spectra of Oph A taken at two epochs and detected
a longitudinal component of the magnetic field of order of G in one
of the datasets. The detection of the magnetic field only at one epoch can be
explained by stellar rotation which is also invoked to explain observed
periodic X-ray activity. From archival HARPS ESO VLT high resolution spectra we
derived the fundamental stellar parameters of Oph A and further
constrained its age. We conclude that Oph A provides strong evidence for
the presence of active X-ray emitting regions on young magnetized early type
stars.Comment: 4 pages, 1 figure, 2 tables, accepted as a "Letter to the Editor" to
Astronomy & Astrophysic
A probable pre-main sequence chemically peculiar star in the open cluster Stock 16
We used the Ultraviolet and Visual Echelle Spectrograph of the ESO-Very Large
Telescope to obtain a high resolution and high signal-to-noise ratio spectrum
of Stock 16-12, an early-type star which previous Delta-a photometric
observations suggest being a chemically peculiar (CP) star. We used spectral
synthesis to perform a detailed abundance analysis obtaining an effective
temperature of 8400 +/- 400 K, a surface gravity of 4.1 +/- 0.4, a
microturbulence velocity of 3.4 +0.7/-0.3 km/s, and a projected rotational
velocity of 68 +/- 4 km/s. We provide photometric and spectroscopic evidence
showing the star is most likely a member of the young Stock 16 open cluster
(age 3-8 Myr). The probable cluster membership, the star's position in the
Hertzsprung-Russell diagram, and the found infrared excess strongly suggest the
star is still in the pre-main-sequence (PMS) phase. We used PMS evolutionary
tracks to determine the stellar mass, which ranges between 1.95 and 2.3 Msun,
depending upon the adopted spectroscopic or photometric data results.
Similarly, we obtained a stellar age ranging between 4 and 6 Myr, in agreement
with that of the cluster. Because the star's chemical abundance pattern
resembles well that known of main sequence CP metallic line (Am) stars, the
object sets important constraints to the diffusion theory. Additional
spectroscopic and spectropolarimetric data allowed us to conclude that the
object is probably a single non-magnetic star.Comment: Accepted for publication in MNRAS; 8 pages, 5 figures, 1 tabl
Weak magnetic fields in white dwarfs and their direct progenitors?
We have carried out a re-analysis of polarimetric data of central stars of
planetary nebulae, hot subdwarfs, and white dwarfs taken with FORS1 (FOcal
Reducer and low dispersion Spectrograph) on the VLT (Very Large Telescope), and
added a large number of new observations in order to increase the sample. A
careful analysis of the observations using only one wavelength calibration for
the polarimetrically analysed spectra and for all positions of the retarder
plate of the spectrograph is crucial in order to avoid spurious signals. We
find that the previous detections of magnetic fields in subdwarfs and central
stars could not be confirmed while about 10% of the observed white dwarfs have
magnetic fields at the kilogauss level.Comment: 6 pages, Proceedings of the 18th European White Dwarf Workshop, ASP
Conference Serie
The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars
The distribution of stars in the Hertzsprung-Russell diagram narrates their
evolutionary history and directly assesses their properties. Placing stars in
this diagram however requires the knowledge of their distances and interstellar
extinctions, which are often poorly known for Galactic stars. The spectroscopic
Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is
independent of distance and extinction measurements. Based on spectroscopically
derived effective temperatures and gravities of almost 600 stars, we derive for
the first time the observational distribution of Galactic massive stars in the
sHRD. While biases and statistical limitations in the data prevent detailed
quantitative conclusions at this time, we see several clear qualitative trends.
By comparing the observational sHRD with different state-of-the-art stellar
evolutionary predictions, we conclude that convective core overshooting may be
mass-dependent and, at high mass (), stronger than previously
thought. Furthermore, we find evidence for an empirical upper limit in the sHRD
for stars with between 10000 and 32000 K and, a strikingly large
number of objects below this line. This over-density may be due to inflation
expanding envelopes in massive main-sequence stars near the Eddington limit.Comment: 5 pages, 2 figures, 1 table; accepted for publication in A&A Letter
gamma Doradus pulsation in two pre-main sequence stars discovered by CoRoT
Pulsations in pre-main sequence stars have been discovered several times
within the last years. But nearly all of these pulsators are of delta
Scuti-type. gamma Doradus-type pulsation in young stars has been predicted by
theory, but lack observational evidence. We present the investigation of
variability caused by rotation and (gammaDoradus-type) pulsation in two
pre-main sequence members of the young open cluster NGC2264 using
high-precision time series photometry from the CoRoT satellite and dedicated
high-resolution spectroscopy. Time series photometry of NGC2264VAS20 and NGC
2264VAS87 was obtained by the CoRoT satellite during the dedicated short run
SRa01 in March 2008. NGC2264VAS87 was re-observed by CoRoT during the short run
SRa05 in December 2011 and January 2012. Frequency analysis was conducted using
Period04 and SigSpec. The spectral analysis was performed using equivalent
widths and spectral synthesis. The frequency analysis yielded 10 and 14
intrinsic frequencies for NGC2264VAS20 and NGC2264VAS 87, respectively, in the
range from 0 to 1.5c/d which are attributed to be caused by a combination of
rotation and pulsation. The effective temperatures were derived to be
6380150K for NGC2264VAS20 and 6220150K for NGC2264VAS87. Membership
of the two stars to the cluster is confirmed independently using X-ray fluxes,
radial velocity measurements and proper motions available in the literature.
The derived Li abundances of log n(Li)=3.34 and 3.54 for NGC2264VAS20 and
NGC2264VAS87, respectively, are in agreement with the Li abundance for other
stars in NGC2264 of similar Teff reported in the literature. We conclude that
the two objects are members of NGC2264 and therefore are in their pre-main
sequence evolutionary stage. Assuming that part of their variability is caused
by pulsation, these two stars might be the first pre-main sequence gamma
Doradus candidates.Comment: 11 pages, 10 figures, A&A accepte
- …