587 research outputs found

    Probing the Kondo Lattice Model with Alkaline Earth Atoms

    Full text link
    We study transport properties of alkaline-earth atoms governed by the Kondo Lattice Hamiltonian plus a harmonic confining potential, and suggest simple dynamical probes of several different regimes of the phase diagram that can be implemented with current experimental techniques. In particular, we show how Kondo physics at strong coupling, low density, and in the heavy fermion phase is manifest in the dipole oscillations of the conduction band upon displacement of the trap center.Comment: 5 pages, 4 figure

    Phase diagram of the Bose Kondo-Hubbard model

    Full text link
    We study a bosonic version of the Kondo lattice model with an on-site repulsion in the conduction band, implemented with alkali atoms in two bands of an optical lattice. Using both weak and strong-coupling perturbation theory, we find that at unit filling of the conduction bosons the superfluid to Mott insulator transition should be accompanied by a magnetic transition from a ferromagnet (in the superfluid) to a paramagnet (in the Mott insulator). Furthermore, an analytic treatment of Gutzwiller mean-field theory reveals that quantum spin fluctuations induced by the Kondo exchange cause the otherwise continuous superfluid to Mott-insulator phase transition to be first order. We show that lattice separability imposes a serious constraint on proposals to exploit excited bands for quantum simulations, and discuss a way to overcome this constraint in the context of our model by using an experimentally realized non-separable lattice. A method to probe the first-order nature of the transition based on collapses and revivals of the matter-wave field is also discussed.Comment: 10 pages, 5 figures, V2: extended discussion of effective Hamiltonians and mean-field theory, added Fig.

    Persistence of locality in systems with power-law interactions

    Get PDF
    Motivated by recent experiments with ultra-cold matter, we derive a new bound on the propagation of information in DD-dimensional lattice models exhibiting 1/rα1/r^{\alpha} interactions with α>D\alpha>D. The bound contains two terms: One accounts for the short-ranged part of the interactions, giving rise to a bounded velocity and reflecting the persistence of locality out to intermediate distances, while the other contributes a power-law decay at longer distances. We demonstrate that these two contributions not only bound but, except at long times, \emph{qualitatively reproduce} the short- and long-distance dynamical behavior following a local quench in an XYXY chain and a transverse-field Ising chain. In addition to describing dynamics in numerous intractable long-range interacting lattice models, our results can be experimentally verified in a variety of ultracold-atomic and solid-state systems.Comment: 5 pages, 4 figures, version accepted by PR

    Non-equilibrium fixed points of coupled Ising models

    Full text link
    Driven-dissipative systems are expected to give rise to non-equilibrium phenomena that are absent in their equilibrium counterparts. However, phase transitions in these systems generically exhibit an effectively classical equilibrium behavior in spite of their non-equilibrium origin. In this paper, we show that multicritical points in such systems lead to a rich and genuinely non-equilibrium behavior. Specifically, we investigate a driven-dissipative model of interacting bosons that possesses two distinct phase transitions: one from a high- to a low-density phase---reminiscent of a liquid-gas transition---and another to an antiferromagnetic phase. Each phase transition is described by the Ising universality class characterized by an (emergent or microscopic) Z2\mathbb{Z}_2 symmetry. They, however, coalesce at a multicritical point, giving rise to a non-equilibrium model of coupled Ising-like order parameters described by a Z2×Z2\mathbb{Z}_2 \times \mathbb{Z}_2 symmetry. Using a dynamical renormalization-group approach, we show that a pair of non-equilibrium fixed points (NEFPs) emerge that govern the long-distance critical behavior of the system. We elucidate various exotic features of these NEFPs. In particular, we show that a generic continuous scale invariance at criticality is reduced to a discrete scale invariance. This further results in complex-valued critical exponents and spiraling phase boundaries, and it is also accompanied by a complex Liouvillian gap even close to the phase transition. As direct evidence of the non-equilibrium nature of the NEFPs, we show that the fluctuation-dissipation relation is violated at all scales, leading to an effective temperature that becomes "hotter" and "hotter" at longer and longer wavelengths. Finally, we argue that this non-equilibrium behavior can be observed in cavity arrays with cross-Kerr nonlinearities.Comment: 19+11 pages, 7+9 figure
    • …
    corecore