8 research outputs found

    Strontium Substituted Tricalcium Phosphate Bone Cement: Short and Long‐Term Time‐Resolved Studies and In Vitro Properties

    Get PDF
    Due to a significant influence of strontium (Sr) on bone regeneration, Sr substituted beta-tricalcium phosphate (Sr-TCP) cement is prepared and investigated by short- and long-term time-resolved techniques. For short-term investigations, energy-dispersive X-ray diffraction, infrared spectroscopy, and, for the first time, terahertz time-domain spectroscopy techniques are applied. For long-term time-resolved studies, angular dispersive X-ray diffraction, scanning electron microscopy, mechanical tests, and behavior in Ringer solution are carried out. After 45 min of the cement setting, the Sr-TCP phase is no longer detectable. During this time period, an appearance and constant increase of the final brushite phase are registered. The compressive strength of the Sr-TCP cement increases from 4.5 MPa after 2 h of setting and reaches maximum at 13.3 MPa after 21 d. After cement soaking for 21 d in Ringer solution, apatite final product, with an admixture of brushite and TCP phases is detected. The cytotoxicity aspects of the prepared cement are investigated using NCTC 3T3 fibroblast cell line, and the cytocompatibility-by human dental pulp mesenchymal stem cells. The obtained results allow to conclude that the developed Sr-TCP cement is promising for biomedical applications for bone tissue

    Incorporation of Manganese (II) in Beta-Tricalcium Phosphate from EPR and ENDOR Measurements for Powders

    No full text
    Powders of β-tricalcium phosphate (β-TCP, Ca3PO4) doped with manganese (Mn2+) are comprehensively analyzed with electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques. The modeling of the spectra permitted to calculate the values of zero-field splitting (B20 = −904 MHz; B40 = −1.41 MHz and B43 = 195.2 MHz) and explain the origin of the low-field hyperfine structures as the allowed spin transitions of fine structure. Three structurally inequivalent positions for Mn2+ in the β-TCP crystal lattice are identified and their g-factors and hyperfine constants are quantified. The obtained results can serve as fundamental background to the study of structurally disordered matrices with high spin (S ≥ 1) impurities which are important for catalytic systems

    Incorporation of Manganese (II) in Beta-Tricalcium Phosphate from EPR and ENDOR Measurements for Powders

    No full text
    Powders of β-tricalcium phosphate (β-TCP, Ca3PO4) doped with manganese (Mn2+) are comprehensively analyzed with electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques. The modeling of the spectra permitted to calculate the values of zero-field splitting (B20 = −904 MHz; B40 = −1.41 MHz and B43 = 195.2 MHz) and explain the origin of the low-field hyperfine structures as the allowed spin transitions of fine structure. Three structurally inequivalent positions for Mn2+ in the β-TCP crystal lattice are identified and their g-factors and hyperfine constants are quantified. The obtained results can serve as fundamental background to the study of structurally disordered matrices with high spin (S ≥ 1) impurities which are important for catalytic systems

    Study of Tricalcium Phosphate Ceramics Doped with Gadolinium Ions with Various EPR Techniques

    No full text
    Tricalcium phosphate (TCP)-based materials, such as β-Ca3(PO4)2 doped with rare earth ions (RE), have shown applications as biomaterials, lighting emitting materials, scintillating materials, in vivo imaging probes, and thermoluminescent dosimeters. Their properties are found to be dependent on the distribution of RE3+ on Ca2+ sites that can be controlled by pulsed electron paramagnetic resonance (EPR) and electron spin echo envelop modulation (ESEEM) experiments. The main spectroscopic parameters (spin Hamiltonian values) of Gd3+ and nitrogen impurity centers are quantitatively determined (g-factor, the fine structure parameters D and E, the hyperfine constants A) as well as dynamic characteristics: spin–lattice T1 and spin–spin T2 relaxation times. Based on the analysis of the EPR datasets, the interatomic distance between Gd3+ and 31P was estimated in the dipole–dipole approximation. Two structurally nonequivalent Gd3+ positions in the β-TCP structure have been identified. The obtained valuable results demonstrate applicability of modern EPR techniques to characterize Gd-TCP systems despite the powder structure of the material and high electron spin S = 7/2 of Gd3+ ions

    Composite Polyvinylpyrrolidone–Sodium Alginate—Hydroxyapatite Hydrogel Films for Bone Repair and Wound Dressings Applications

    No full text
    Today, the synthesis of biocompatible and bioresorbable composite materials such as “polymer matrix-mineral constituent,” which stimulate the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine. In this study, composite films of bioresorbable polymers of polyvinylpyrrolidone (PVP) and sodium alginate (SA) with hydroxyapatite (HA) were obtained. HA was introduced by two different methods. In one of them, it was synthesized in situ in a solution of polymer mixture, and in another one, it was added ex situ. Phase composition, microstructure, swelling properties and biocompatibility of films were investigated. The crosslinked composite PVP-SA-HA films exhibit hydrogel swelling characteristics, increasing three times in mass after immersion in a saline solution. It was found that composite PVP-SA-HA hydrogel films containing HA synthesized in situ exhibited acute cytotoxicity, associated with the presence of HA synthesis reaction byproducts—ammonia and ammonium nitrate. On the other hand, the films with HA added ex situ promoted the viability of dental pulp stem cells compared to the films containing only a polymer PVP-SA blend. The developed composite hydrogel films are recommended for such applications, such as membranes in osteoplastic surgery and wound dressing

    Polyvinylpyrrolidone–Alginate Film Barriers for Abdominal Surgery: Anti-Adhesion Effect in Murine Model

    No full text
    Surgical operations on the peritoneum are often associated with the formation of adhesions, which can interfere with the normal functioning of the internal organs. The effectiveness of existing barrier materials is relatively low. In this work, the effectiveness of soluble alginate–polyvinylpyrrolidone (PVP-Alg) and non-soluble Ca ion cross-linked (PVP-Alg-Ca) films in preventing these adhesions was evaluated. Experiments in vivo were performed on mice via mechanical injury to the adjacent peritoneum wall and the caecum, followed by the application of PVP-Alg or PVP-Alg-Ca films to the injured area. After 7 days, samples from the peritoneal wall and caecum were analyzed using histology and quantitative polymerase chain reaction (qPCR). It was shown that the expression of genes responsible for adhesion formation in the caecum in the PVP-Alg group was comparable to that in the control group, while in the PVP-Alg-Ca group, it increased by 5–10 times. These results were consistent with the histology: in the PVP-Alg group, the adhesions did not form, while in the PVP-Alg-Ca group, the adhesions corresponded to five points on the adhesion scale. Therefore, the formation of intraperitoneal adhesions can be effectively prevented by non-crosslinked, biodegradable PVP-Alg films, whereas cross-linked, not biodegradable PVP-Alg-Ca films cause inflammation and adhesion formation

    Polyvinylpyrrolidone—Alginate—Carbonate Hydroxyapatite Porous Composites for Dental Applications

    No full text
    An alternative approach for the currently used replacement therapy in dentistry is to apply materials that restore tooth tissue. Among them, composites, based on biopolymers with calcium phosphates, and cells can be applied. In the present work, a composite based on polyvinylpyrrolidone (PVP) and alginate (Alg) with carbonate hydroxyapatite (CHA) was prepared and characterized. The composite was investigated by X-ray diffraction, infrared spectroscopy, electron paramagnetic resonance (EPR) and scanning electron microscopy methods, and the microstructure, porosity, and swelling properties of the material were described. In vitro studies included the MTT test using mouse fibroblasts, and adhesion and survivability tests with human dental pulp stem cells (DPSC). The mineral component of the composite corresponded to CHA with an admixture of amorphous calcium phosphate. The presence of a bond between the polymer matrix and CHA particles was shown by EPR. The structure of the material was represented by micro- (30–190 μm) and nano-pores (average 8.71 ± 4.15 nm). The swelling measurements attested that CHA addition increased the polymer matrix hydrophilicity by 200%. In vitro studies demonstrated the biocompatibility of PVP-Alg-CHA (95 ± 5% cell viability), and DPSC located inside the pores. It was concluded that the PVP-Alg-CHA porous composite is promising for dentistry applications

    Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility

    No full text
    Sr2+-substituted β-tricalcium phosphate (β-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that β-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial β-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the β-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo
    corecore