2,056 research outputs found
The polarizability of diatomic helium
The calculation of the electric dipole polarizability tensor of the He 2 dimer is described, and the results are used in the computation of several dielectric and optical properties of helium gas, at both high (322 K) and low (4 K) temperatures. The properties considered are the second dielectric virial coefficient, the second Kerr virial coefficient, and the depolarization ratio of the integrated intensities for the Raman scattering experiments. The thesis consists of five parts: the polarizability and various properties are defined; the calculation of the polarizability in the long-range region in terms of a quantum mechanical multipole expansion is described; the calculation of the He2 polarizability in the overlap region via coupled Hartree-Fock perturbation theory is described; the calculation of the quantum pair distribution function for both the He-3 and He-4 isotopes at 4 K is discussed; and the calculated values of the properties of helium gas are given
Observation of Quantum Oscillations in The Low Temperature Specific Heat of SmB6
We report measurements of the low-temperature specific heat of Al-flux-grown samples of SmB6 in magnetic fields up to 32 T. Quantum oscillations periodic in 1/H are observed between 8 and 32 T at selected angles between [001] and [111]. The observed frequencies and their angular dependence are consistent with previous magnetic torque measurements of SmB6 but the effective masses inferred from Lifshitz-Kosevich theory are significantly larger and closer to those inferred from zero-field specific heat. Our results are thus consistent with a bulk density of states origin for the oscillations
Création automatique de classes de signatures manuscrites pour l'authentification en ligne
International audienceNous nous intéressons dans ce papier à l'optimisation d'un système d'authentification par signature manuscrite. Celui-ci est basé sur une approche Coarse To Fine et utilise l'algorithme Dynamic Time Warping ainsi qu'un seuil de décision global pour accepter ou rejeter un signataire. L'optimisation proposée réside dans l'utilisation d'un algorithme de classification non supervisée afin de déterminer automatiquement des classes de signatures. Pour chacune des classes, un seuil de décision spécifique est établi. Dans ces travaux, nous nous sommes plus particulièrement attaché à étudier l'impact de la classification sur les performance. Les résultats expérimentaux sur la base SVC montrent que l'on peut améliorer les performances en diminuant le taux d'erreur égale de 14,4%. Cependant la sensibilité de la classification est très grande et la notion de classe unique pour un signataire semble trop restrictive
Double Charge Exchange And Configuration Mixing
The energy dependence of forward pion double charge exchange reactions on
light nuclei is studied for both the Ground State transition and the
Double-Isobaric-Analog-State transitions. A common characteristic of these
double reactions is a resonance-like peak around 50 MeV pion lab energy. This
peak arises naturally in a two-step process in the conventional pion-nucleon
system with proper handling of nuclear structure and pion distortion. A
comparison among the results of different nuclear structure models demonstrates
the effects of configuration mixing. The angular distribution is used to fix
the single particle wave function.Comment: Added 1 figure (now 8) corrected references and various other change
Feedback Control as a Framework for Understanding Tradeoffs in Biology
Control theory arose from a need to control synthetic systems. From
regulating steam engines to tuning radios to devices capable of autonomous
movement, it provided a formal mathematical basis for understanding the role of
feedback in the stability (or change) of dynamical systems. It provides a
framework for understanding any system with feedback regulation, including
biological ones such as regulatory gene networks, cellular metabolic systems,
sensorimotor dynamics of moving animals, and even ecological or evolutionary
dynamics of organisms and populations. Here we focus on four case studies of
the sensorimotor dynamics of animals, each of which involves the application of
principles from control theory to probe stability and feedback in an organism's
response to perturbations. We use examples from aquatic (electric fish station
keeping and jamming avoidance), terrestrial (cockroach wall following) and
aerial environments (flight control in moths) to highlight how one can use
control theory to understand how feedback mechanisms interact with the physical
dynamics of animals to determine their stability and response to sensory inputs
and perturbations. Each case study is cast as a control problem with sensory
input, neural processing, and motor dynamics, the output of which feeds back to
the sensory inputs. Collectively, the interaction of these systems in a closed
loop determines the behavior of the entire system.Comment: Submitted to Integr Comp Bio
High-resolution emission spectroscopy retrievals of MASCARA-1b with CRIRES+: Strong detections of CO, HO and Fe emission lines and a CO consistent with solar
The characterization of exoplanet atmospheres has proven to be successful
using high-resolution spectroscopy. Phase curve observations of hot/ultra-hot
Jupiters can reveal their compositions and thermal structures, thereby allowing
the detection of molecules and atoms in the planetary atmosphere using the
cross-correlation technique. We present pre-eclipse observations of the
ultra-hot Jupiter, MASCARA-1b, observed with the recently upgraded CRIRES+
high-resolution infrared spectrograph at the VLT. We report a detection of (8.3) in the K-band and confirm previous detections of
(>15) and (>10) in the day-side atmosphere
of MASCARA-1b. Using a Bayesian inference framework, we retrieve the abundances
of the detected species and constrain planetary orbital velocities, -
profiles, and the carbon-to-oxygen ratio (). A free retrieval results
in an elevated abundance (() =
), leading to a super-solar ratio. More
realistically, allowing for vertically-varying chemistry in the atmosphere by
incorporating a chemical-equilibrium model results in a of
and a metallicity of ,
both consistent with solar values. Finally, we also report a slight offset of
the feature in both K and v that could be a
signature of atmospheric dynamics. Due to the 3D structure of exoplanet
atmospheres and the exclusion of time/phase dependence in our 1D forward
models, further follow-up observations and analysis are required to confirm or
refute this result.Comment: 21 pages, 18 figures, 4 tables, accepted for publication in Monthly
Notices of the Royal Astronomical Societ
Maximum Edge-Disjoint Paths in -sums of Graphs
We consider the approximability of the maximum edge-disjoint paths problem
(MEDP) in undirected graphs, and in particular, the integrality gap of the
natural multicommodity flow based relaxation for it. The integrality gap is
known to be even for planar graphs due to a simple
topological obstruction and a major focus, following earlier work, has been
understanding the gap if some constant congestion is allowed.
In this context, it is natural to ask for which classes of graphs does a
constant-factor constant-congestion property hold. It is easy to deduce that
for given constant bounds on the approximation and congestion, the class of
"nice" graphs is nor-closed. Is the converse true? Does every proper
minor-closed family of graphs exhibit a constant factor, constant congestion
bound relative to the LP relaxation? We conjecture that the answer is yes.
One stumbling block has been that such bounds were not known for bounded
treewidth graphs (or even treewidth 3). In this paper we give a polytime
algorithm which takes a fractional routing solution in a graph of bounded
treewidth and is able to integrally route a constant fraction of the LP
solution's value. Note that we do not incur any edge congestion. Previously
this was not known even for series parallel graphs which have treewidth 2. The
algorithm is based on a more general argument that applies to -sums of
graphs in some graph family, as long as the graph family has a constant factor,
constant congestion bound. We then use this to show that such bounds hold for
the class of -sums of bounded genus graphs
Recommended from our members
Cyclic AMP Regulation of Protein Lysine Acetylation in Mycobacterium Tuberculosis
Protein lysine acetylation networks can regulate central processes such as carbon metabolism and gene expression in bacteria. In Escherichia coli, cyclic-AMP (cAMP) regulates protein lysine acetyltransferase (PAT) activity at the transcriptional level, but in Mycobacterium tuberculosis, fusion of a cyclic-nucleotide binding domain to a Gcn5-like PAT domain enables direct cAMP control of protein acetylation. Here we describe the allosteric activation mechanism of M. tuberculosis PAT. The crystal structures of the auto-inhibited and cAMP-activated PAT reveal that cAMP binds to a cryptic site in the regulatory domain over 32 Å from the catalytic site. An extensive conformational rearrangement relieves auto-inhibition by a substrate-mimicking lid that covers the protein-substrate binding surface. A steric double latch couples the domains by harnessing a classic, cAMP-mediated, conformational switch. The structures suggest general features that enable the evolution of long-range communication between linked domains
- …