670 research outputs found

    Critical Droplets and Phase Transitions in Two Dimensions

    Full text link
    In two space dimensions, the percolation point of the pure-site clusters of the Ising model coincides with the critical point T_c of the thermal transition and the percolation exponents belong to a special universality class. By introducing a bond probability p_B<1, the corresponding site-bond clusters keep on percolating at T_c and the exponents do not change, until p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the critical percolation exponents switch to the 2D Ising universality class. We show here that the result is valid for a wide class of bidimensional models with a continuous magnetization transition: there is a critical bond probability p_c such that, for any p_B>=p_c, the onset of percolation of the site-bond clusters coincides with the critical point of the thermal transition. The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they suddenly change to the thermal exponents, so that the corresponding clusters are critical droplets of the phase transition. Our result is based on Monte Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde

    Extended Defects in the Potts-Percolation Model of a Solid: Renormalization Group and Monte Carlo Analysis

    Get PDF
    We extend the model of a 2dd solid to include a line of defects. Neighboring atoms on the defect line are connected by ?springs? of different strength and different cohesive energy with respect to the rest of the system. Using the Migdal-Kadanoff renormalization group we show that the elastic energy is an irrelevant field at the bulk critical point. For zero elastic energy this model reduces to the Potts model. By using Monte Carlo simulations of the 3- and 4-state Potts model on a square lattice with a line of defects, we confirm the renormalization-group prediction that for a defect interaction larger than the bulk interaction the order parameter of the defect line changes discontinuously while the defect energy varies continuously as a function of temperature at the bulk critical temperature.Comment: 13 figures, 17 page

    Oriented Percolation in One-Dimensional 1/|x-y|^2 Percolation Models

    Full text link
    We consider independent edge percolation models on Z, with edge occupation probabilities p_ = p if |x-y| = 1, 1 - exp{- beta / |x-y|^2} otherwise. We prove that oriented percolation occurs when beta > 1 provided p is chosen sufficiently close to 1, answering a question posed in [Commun. Math. Phys. 104, 547 (1986)]. The proof is based on multi-scale analysis.Comment: 19 pages, 2 figures. See also Commentary on J. Stat. Phys. 150, 804-805 (2013), DOI 10.1007/s10955-013-0702-

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Predictions of bond percolation thresholds for the kagom\'e and Archimedean (3,122)(3,12^2) lattices

    Full text link
    Here we show how the recent exact determination of the bond percolation threshold for the martini lattice can be used to provide approximations to the unsolved kagom\'e and (3,12^2) lattices. We present two different methods, one of which provides an approximation to the inhomogeneous kagom\'e and (3,12^2) bond problems, and the other gives estimates of pcp_c for the homogeneous kagom\'e (0.5244088...) and (3,12^2) (0.7404212...) problems that respectively agree with numerical results to five and six significant figures.Comment: 4 pages, 5 figure

    Microcanonical cluster algorithms

    Full text link
    I propose a numerical simulation algorithm for statistical systems which combines a microcanonical transfer of energy with global changes in clusters of spins. The advantages of the cluster approach near a critical point augment the speed increases associated with multi-spin coding in the microcanonical approach. The method also provides a limited ability to tune the average cluster size.Comment: 10 page

    Potts-Percolation-Gauss Model of a Solid

    Full text link
    We study a statistical mechanics model of a solid. Neighboring atoms are connected by Hookian springs. If the energy is larger than a threshold the "spring" is more likely to fail, while if the energy is lower than the threshold the spring is more likely to be alive. The phase diagram and thermodynamic quantities, such as free energy, numbers of bonds and clusters, and their fluctuations, are determined using renormalization-group and Monte-Carlo techniques.Comment: 10 pages, 12 figure

    Dynamics of the 2d Potts model phase transition

    Full text link
    The dynamics of 2d Potts models, which are temperature driven through the phase transition using updating procedures in the Glauber universality class, is investigated. We present calculations of the hysteresis for the (internal) energy and for Fortuin-Kasteleyn clusters. The shape of the hysteresis is used to define finite volume estimators of physical observables, which can be used to study the approach to the infinite volume limit. We compare with equilibrium configurations and the preliminary indications are that the dynamics leads to considerable alterations of the statistical properties of the configurations studied.Comment: Lattice2002(spin
    • …
    corecore