13 research outputs found

    A Musical instrument in MEMS

    Get PDF
    In this work we describe a MEMS instrument that resonates at audible frequencies, and with which music can be made. The sounds are generated by mechanical resonators and capacitive displacement sensors. Damping by air scales unfavourably for generating audible frequencies with small devices. Therefore a vacuum of 1.5 mbar is used to increase the quality factor and consequently the duration of the sounds to around 0.25 s. The instrument will be demonstrated during the MME 2010 conference opening, in a musical composition especially made for the occasion

    Hyponatremia in the intensive care unit: How to avoid a Zugzwang situation?

    Get PDF

    A Musical instrument in MEMS

    No full text
    In this work we describe a MEMS instrument that resonates at audible frequencies, and with which music can be made. The sounds are generated by mechanical resonators and capacitive displacement sensors. Damping by air scales unfavourably for generating audible frequencies with small devices. Therefore a vacuum of 1.5 mbar is used to increase the quality factor and consequently the duration of the sounds to around 0.25 s. The instrument will be demonstrated during the MME 2010 conference opening, in a musical composition especially made for the occasion

    The micronium - a musical MEMS instrument

    Get PDF
    The Micronium is a musical instrument fabricated from silicon using microelectromechanical system (MEMS) technology. It is—to the best of our knowledge—the first musical micro-instrument fabricated using MEMS technology, where the actual sound is generated by mechanical microstructures. The Micronium consists of mass-spring systems that are designed to resonate at audible frequencies. Their displacement is measured by comb drives and is used as the audio signal to drive a loudspeaker. The instrument's sounds are pure sine waves. An extensive set of measurements of individual resonators is presented and discussed. Quality factor measurements at various ambient pressures show that an ambient pressure of 1 mbar results in a note duration of 1 s. The realized frequency deviates considerably from the designed resonator frequency. Measurement results of many resonators are shown to obtain understanding of this deviation. Initial experiments with electrostatic tuning using variable-gap comb drives show a tuning ratio of 5% maximum, depending on the resonator frequency. An audio recording of the instrument is included as a supplementary MP3 file
    corecore