1,256 research outputs found
Contribution of extracellular negatively charged residues to ATP action and zinc modulation of rat P2X 2 receptors
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65506/1/j.1471-4159.2008.05228.x.pd
Phase diffusion as a model for coherent suppression of tunneling in the presence of noise
We study the stabilization of coherent suppression of tunneling in a driven
double-well system subject to random periodic function ``kicks''. We
model dissipation due to this stochastic process as a phase diffusion process
for an effective two-level system and derive a corresponding set of Bloch
equations with phase damping terms that agree with the periodically kicked
system at discrete times. We demonstrate that the ability of noise to localize
the system on either side of the double-well potenital arises from overdamping
of the phase of oscillation and not from any cooperative effect between the
noise and the driving field. The model is investigated with a square wave
drive, which has qualitatively similar features to the widely studied
cosinusoidal drive, but has the additional advantage of allowing one to derive
exact analytic expressions.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
Interpol: An R package for preprocessing of protein sequences
<p>Abstract</p> <p>Background</p> <p>Most machine learning techniques currently applied in the literature need a fixed dimensionality of input data. However, this requirement is frequently violated by real input data, such as DNA and protein sequences, that often differ in length due to insertions and deletions. It is also notable that performance in classification and regression is often improved by numerical encoding of amino acids, compared to the commonly used sparse encoding.</p> <p>Results</p> <p>The software "Interpol" encodes amino acid sequences as numerical descriptor vectors using a database of currently 532 descriptors (mainly from AAindex), and normalizes sequences to uniform length with one of five linear or non-linear interpolation algorithms. Interpol is distributed with open source as platform independent R-package. It is typically used for preprocessing of amino acid sequences for classification or regression.</p> <p>Conclusions</p> <p>The functionality of Interpol widens the spectrum of machine learning methods that can be applied to biological sequences, and it will in many cases improve their performance in classification and regression.</p
Curve crossing in linear potential grids: the quasidegeneracy approximation
The quasidegeneracy approximation [V. A. Yurovsky, A. Ben-Reuven, P. S.
Julienne, and Y. B. Band, J. Phys. B {\bf 32}, 1845 (1999)] is used here to
evaluate transition amplitudes for the problem of curve crossing in linear
potential grids involving two sets of parallel potentials. The approximation
describes phenomena, such as counterintuitive transitions and saturation
(incomplete population transfer), not predictable by the assumption of
independent crossings. Also, a new kind of oscillations due to quantum
interference (different from the well-known St\"uckelberg oscillations) is
disclosed, and its nature discussed. The approximation can find applications in
many fields of physics, where multistate curve crossing problems occur.Comment: LaTeX, 8 pages, 8 PostScript figures, uses REVTeX and psfig,
submitted to Physical Review
Social preferences, accountability, and wage bargaining
We assess the extent of preferences for employment in a collective wage bargaining situation with heterogeneous workers. We vary the size of the union and introduce a treatment mechanism transforming the voting game into an individual allocation task. Our results show that highly productive workers do not take employment of low productive workers into account when making wage proposals, regardless of whether insiders determine the wage or all workers. The level of pro-social preferences is small in the voting game, while it increases as the game is transformed into an individual allocation task. We interpret this as an accountability effect
Dark-in-Bright Solitons in Bose-Einstein Condensates with Attractive Interactions
We demonstrate a possibility to generate localized states in effectively
one-dimensional Bose-Einstein condensates with a negative scattering length in
the form of a dark soliton in the presence of an optical lattice (OL) and/or a
parabolic magnetic trap. We connect such structures with twisted localized
modes (TLMs) that were previously found in the discrete nonlinear
Schr{\"o}dinger equation. Families of these structures are found as functions
of the OL strength, tightness of the magnetic trap, and chemical potential, and
their stability regions are identified. Stable bound states of two TLMs are
also found. In the case when the TLMs are unstable, their evolution is
investigated by means of direct simulations, demonstrating that they transform
into large-amplitude fundamental solitons. An analytical approach is also
developed, showing that two or several fundamental solitons, with the phase
shift between adjacent ones, may form stable bound states, with
parameters quite close to those of the TLMs revealed by simulations. TLM
structures are found numerically and explained analytically also in the case
when the OL is absent, the condensate being confined only by the magnetic trap.Comment: 13 pages, 7 figures, New Journal of Physics (in press
Kidney Transplantation From Deceased Donors With Vaccine-induced Immune Thrombocytopenia and Thrombosis: An Updated Analysis of the UK Experience
Background:
The emergence and attendant mortality of vaccine-induced immune thrombocytopenia and thrombosis (VITT) as a consequence of vaccination against severe acute respiratory syndrome coronavirus 2 have resulted in some patients with VITT being considered as deceased organ donors. Outcomes after kidney transplantation in this context are poorly described. Because the disease seems to be mediated by antiplatelet factor 4 antibodies, there is a theoretical risk of transmission via passenger leukocytes within the allograft.
Methods:
We analyzed the experience of kidney transplantation from donors with VITT in the United Kingdom between January and June 2021. We followed-up all recipients of kidney-only transplants from donors with VITT to detect major postoperative complications or features of disease transmission and assess graft survival and function.
Results:
There were 16 kidney donors and 30 single kidney transplant recipients in our study period. Of 11 preimplantation biopsies, 4 showed widespread glomerular microthrombi. After a median of 5 mo, patient and graft survival were 97% and 90%, respectively. The median 3-mo estimated glomerular filtration rate was 51 mL/min/1.73 m2. Two recipients had detectable antiplatelet factor 4 antibodies but no evidence of clinical disease after transplantation. Major hemorrhagic complications occurred in 3 recipients, all of whom had independent risk factors for bleeding, resulting in the loss of 2 grafts. The involvement of VITT could not be completely excluded in one of these cases.
Conclusions:
The UK experience to date shows that favorable outcomes are possible after kidney transplantation from donors with VITT but highlights the need for ongoing vigilance for donor-related complications in these patients
Theory of Circle Maps and the Problem of One-Dimensional Optical Resonator with a Periodically Moving Wall
We consider the electromagnetic field in a cavity with a periodically
oscillating perfectly reflecting boundary and show that the mathematical theory
of circle maps leads to several physical predictions. Notably, well-known
results in the theory of circle maps (which we review briefly) imply that there
are intervals of parameters where the waves in the cavity get concentrated in
wave packets whose energy grows exponentially. Even if these intervals are
dense for typical motions of the reflecting boundary, in the complement there
is a positive measure set of parameters where the energy remains bounded.Comment: 34 pages LaTeX (revtex) with eps figures, PACS: 02.30.Jr, 42.15.-i,
42.60.Da, 42.65.Y
IL-4 Amplifies the Pro-Inflammatory Effect of Adenosine in Human Mast Cells by Changing Expression Levels of Adenosine Receptors
Adenosine inhalation produces immediate bronchoconstriction in asthmatics but not in normal subjects. The bronchospastic effect of adenosine is largely mediated through adenosine-induced mast cell activation, the mechanism of which is poorly understood due to limitations in culturing human primary mast cells. Here, we show that human umbilical cord blood -derived mast cells incubated with the Th2 cytokine IL-4 develop increased sensitivity to adenosine. Potentiation of anti-IgE- induced and calcium ionophore/PMA-induced degranulation was augmented in mast cells cultured with IL-4, and this effect was reduced or abolished by pre-treatment with A2BsiRNA and selective A2B receptor antagonists, respectively. IL-4 incubation resulted in the increased expression of A2B and reduced expression of A2A adenosine receptors on human mast cells. These results suggest that Th2 cytokines in the asthmatic lung may alter adenosine receptor expression on airway mast cells to promote increased responsiveness to adenosine
- …