271 research outputs found

    O-GlcNAcase:promiscuous hexosaminidase or key regulator of O-GlcNAc signalling?

    Get PDF
    O-GlcNAc signaling is regulated by an opposing pair of enzymes: O-GlcNAc transferase installs and O-GlcNAcase (OGA) removes the modification from proteins. The dynamics and regulation of this process are only beginning to be understood as the physiological functions of both enzymes are being probed using genetic and pharmacological approaches. This minireview charts the discovery and functional and structural analysis of OGA and summarizes the insights gained from recent studies using OGA inhibition, gene knock-out, and overexpression. We identify several areas of “known unknowns” that would benefit from future research, such as the enigmatic C-terminal domain of OGA

    Native gel electrophoresis of human telomerase distinguishes active complexes with or without dyskerin

    Get PDF
    Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3′ terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was ‘supershifted’ with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1α to promote angiogenesis

    Get PDF
    Hypoxia-inducible factor (HIF-1) is the key transcription regulator for multiple angiogenic factors and is an appealing target. Ginsenoside-Rg1, a nontoxic saponin isolated from the rhizome of Panax ginseng, exhibits potent proangiogenic activity and has the potential to be developed as a new angiotherapeutic agent. However, the mechanisms by which Rg1 promotes angiogenesis are not fully understood. Here, we show that Rg1 is an effective stimulator of HIF-1α under normal cellular oxygen conditions in human umbilical vein endothelial cells. HIF-1α steady-state mRNA was not affected by Rg1. Rather, HIF-1α protein synthesis was stimulated by Rg1. This effect was associated with constitutive activation of phosphatidylinositol 3-kinase (PI3K)/Akt and its effector p70 S6 kinase (p70S6K), but not extracellular-signal regulated kinase 1/2. We further revealed that HIF-1α induction triggered the expression of target genes, including vascular endothelial growth factor (VEGF). The use of small molecule inhibitors LY294002 or rapamycin to inhibit PI3K/Akt and p70S6K activities, respectively, resulted in diminished HIF-1α activation and subsequent VEGF expression. RNA interference-mediated knockdown of HIF-1α suppressed Rg1-induced VEGF synthesis and angiogenic tube formation, confirming that the effect was HIF-1α specific. Similarly, the angiogenic phenotype could be reversed by inhibition of PI3K/Akt and p70S6K. These results define a hypoxia-independent activation of HIF-1α, uncovering a novel mechanism for Rg1 that could play a major role in angiogenesis and vascular remodeling
    corecore