51 research outputs found

    Genomic instability and proliferative activity as risk factors for distant metastases in breast cancer

    Get PDF
    The role of genomic instability and proliferative activity for development of distant metastases in breast cancer was analysed, and the relative contribution of these two risk factors was quantified. A detailed quantitative comparison was performed between Ki67 and cyclin A as proliferative markers. The frequency of Ki67 and cyclin A-positive cells was scored in the same microscopic areas in 428 breast tumours. The frequency of Ki67-positive cells was found to be highly correlated with the frequency of cyclin A-positive cells, and both proliferation markers were equally good to predict risk of distant metastases. The relative contribution of degree of aneuploidy and proliferative activity as risk markers for developing distant metastases was studied independently. Although increased proliferative activity in general was associated with an increased risk of developing distant metastases, ploidy level was found to be an independent and even stronger marker when considering the group of small (T1) node negative tumours. By combining proliferative activity and ploidy level, a large group of low risk breast tumours (39%) could be identified in which only a few percentage of the tumours (5%) developed distant metastases during the 9-year follow-up time period

    A Role for Polyploidy in the Tumorigenicity of Pim-1-Expressing Human Prostate and Mammary Epithelial Cells

    Get PDF
    Polyploidy is a prominent feature of many human cancers, and it has long been hypothesized that polyploidy may contribute to tumorigenesis by promoting genomic instability. In this study, we investigated whether polyploidy per se induced by a relevant oncogene can promote genomic instability and tumorigenicity in human epithelial cells.When the oncogenic serine-threonine kinase Pim-1 is overexpressed in immortalized, non-tumorigenic human prostate and mammary epithelial cells, these cells gradually converted to polyploidy and became tumorigenic. To assess the contribution of polyploidy to tumorigenicity, we obtained sorted, matched populations of diploid and polyploid cells expressing equivalent levels of the Pim-1 protein. Spectral karyotyping revealed evidence of emerging numerical and structural chromosomal abnormalities in polyploid cells, supporting the proposition that polyploidy promotes chromosomal instability. Polyploid cells displayed an intact p53/p21 pathway, indicating that the viability of polyploid cells in this system is not dependent on the inactivation of the p53 signaling pathway. Remarkably, only the sorted polyploid cells were tumorigenic in vitro and in vivo.Our results support the notion that polyploidy can promote chromosomal instability and the initiation of tumorigenesis in human epithelial cells

    Prognostic factors in prostate cancer

    Get PDF
    Prognostic factors in organ confined prostate cancer will reflect survival after surgical radical prostatectomy. Gleason score, tumour volume, surgical margins and Ki-67 index have the most significant prognosticators. Also the origins from the transitional zone, p53 status in cancer tissue, stage, and aneuploidy have shown prognostic significance. Progression-associated features include Gleason score, stage, and capsular invasion, but PSA is also highly significant. Progression can also be predicted with biological markers (E-cadherin, microvessel density, and aneuploidy) with high level of significance. Other prognostic features of clinical or PSA-associated progression include age, IGF-1, p27, and Ki-67. In patients who were treated with radiotherapy the survival was potentially predictable with age, race and p53, but available research on other markers is limited. The most significant published survival-associated prognosticators of prostate cancer with extension outside prostate are microvessel density and total blood PSA. However, survival can potentially be predicted by other markers like androgen receptor, and Ki-67-positive cell fraction. In advanced prostate cancer nuclear morphometry and Gleason score are the most highly significant progression-associated prognosticators. In conclusion, Gleason score, capsular invasion, blood PSA, stage, and aneuploidy are the best markers of progression in organ confined disease. Other biological markers are less important. In advanced disease Gleason score and nuclear morphometry can be used as predictors of progression. Compound prognostic factors based on combinations of single prognosticators, or on gene expression profiles (tested by DNA arrays) are promising, but clinically relevant data is still lacking
    corecore