36 research outputs found

    Post-target produced [18F]F2 in the production of PET radiopharmaceuticals.

    Get PDF
    Electrophilic radiofluorination was successfully carried out in the early years of PET radiochemistry due to its ease and fast reaction speed. However, at the present, the use of electrophilic methods is limited due to low specific activity (SA). Post-target produced [F-18]F-2 has significantly higher SA compared to other electrophilic approaches, and it has been used in the production of clinical PET radiopharmaceuticals at the Turku PET Centre for years. Here, we summarize the synthesis and use of these radiopharmaceuticals, namely [F-18]FDOPA, [F-18]CFT, [F-18]EF5 and [F-18]FBPA.</p

    Vacuum ultraviolet photon-mediated production of [F-18]F-2

    Get PDF
    The chemistry of F-2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [F-18]F-2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55GBq/mol, for [F-18]F-2 have been achieved so far by using electrical discharge in the post-target production of [F-18]F-2 gas from [F-18]CH3F. We demonstrate that [F-18]F-2 is produced by illuminating a gas mixture of neon/F-2/[F-18]CH3F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [F-18]F-, amount of carrier F-2, and number of 193-nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [F-18]F-2-derived [F-18]NFSi was 10.3 +/- 0.9GBq/mol, and the average radiochemical yield over a wide range of conditions was 6.7% from [F-18]F-. The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories

    In vivo characterization of a novel norepinephrine transporter PET tracer [18F]NS12137 in adult and immature Sprague-Dawley rats

    Get PDF
    Norepinephrine modulates cognitive processes such as working and episodic memory. Pathological changes in norepinephrine and norepinephrine transporter (NET) function and degeneration of the locus coeruleus produce irreversible impairments within the whole norepinephrine system, disrupting cognitive processes. Monitoring these changes could enhance diagnostic accuracy and support development of novel therapeutic components for several neurodegenerative diseases. Thus, we aimed to develop a straightforward nucleophilic fluorination method with high molar activity for the novel NET radiotracer [18F]NS12137 and to demonstrate the ability of [18F]NS12137 to quantify changes in NET expression.Methods: We applied an 18F-radiolabeling method in which a brominated precursor was debrominated by nucleophilic 18F-fluorination in dimethyl sulfoxide. Radiolabeling was followed by a deprotection step, purification, and formulation of the radiotracer. The [18F]NS12137 brain uptake and distribution were studied with in vivo PET/CT and ex vivoautoradiography using both adult and immature Sprague-Dawley rats because postnatal NET expression peaks at 10-20 days post birth. The NET specificity for the tracer was demonstrated by pretreatment of the animals with nisoxetine, which is well-known to have a high affinity for NET.Results: [18F]NS12137 was successfully synthesized with radiochemical yields of 18.6±5.6%, radiochemical purity of >99%, and molar activity of >500 GBq/Όmol at the end of synthesis. The in vivo [18F]NS12137 uptake showed peak standard uptake values (SUV) of over 1.5 (adult) and 2.2 (immature) in the different brain regions. Peak SUV/30 min and peak SUV/60 min ratios were calculated for the different brain regions of the adult and immature rats, with a peak SUV/60 min ratio of more than 4.5 in the striatum of adult rats. As expected, in vivo studies demonstrated uptake of the tracer in brain areas rich in NET, particularly thalamus, neocortex, and striatum, and remarkably also in the locus coeruleus, a quite small volume for imaging with PET. The uptake was significantly higher in immature rats compared to the adult animals. Ex vivo studies using autoradiography showed very strong specific binding in NET-rich areas such as the locus coeruleus and the bed nucleus of the stria terminalis, and high binding in larger grey matter areas such as the neocortex and striatum. The uptake of [18F]NS12137 was dramatically reduced both in vivo and ex vivo by pretreatment with nisoxetine, demonstrating the specificity of binding.Conclusions: [18F]NS12137 was synthesized in good yield and high molar activity and demonstrated the characteristics of a good radiotracer, such as good brain penetration, fast washout, and high specific binding to NET.Keywords: [18F]NS12137, norepinephrine transporter, NET, locus coeruleus, PET, nucleophilic fluorination</p

    Comparison of high and low molar activity TSPO tracer [18F]F-DPA in a mouse model of Alzheimer’s disease

    Get PDF
    [18F]F-DPA, a novel translocator protein 18 kDa (TSPO)-specific radioligand for imaging neuroinflammation, has to date been synthesized with low to moderate molar activities (Am’s). In certain cases, low Am can skew the estimation of specific binding. The high proportion of the non-radioactive component can reduce the apparent-specific binding by competitively binding to receptors. We developed a nucleophilic synthesis of [18F]F-DPA resulting in high Am (990 ± 150 GBq/”mol) and performed in vivo comparison with low Am (9.0 ± 2.9 GBq/”mol) [18F]F-DPA in the same APP/PS1-21 and wild-type mice (injected masses: 0.34 ± 0.13 ”g/kg and 38 ± 15 ”g/kg, respectively). The high level of microgliosis in the APP/PS1-21 mouse model enables good differentiation between diseased and healthy animals and serves better to distinguish the effect of differing Am on specific binding. The differing injected masses affect the washout profile and shape of the time–activity curves. Ratios of standardized uptake values obtained with high and low Am [18F]F-DPA demonstrate that there is a 1.5-fold higher uptake of radioactivity in the brains of APP/PS1-21 animals when imaging is carried out with high Am [18F]F-DPA. The differences between APP/PS1-21 and wild-type animals showed higher significance when high Am was used.</p

    Radiosynthesis and Preclinical Evaluation of an α2A-Adrenoceptor Tracer Candidate, 6-[18F]Fluoro-marsanidine

    Get PDF
    Purpose: The α2-adrenoceptors mediate many effects of norepinephrine and epinephrine, and participate in the regulation of neuronal, endocrine, cardiovascular, vegetative, and metabolic functions. Of the three receptor subtypes, only α2A and α2C are found in the brain in significant amounts. Subtype-selective positron emission tomography (PET) imaging of α2-adrenoceptors has been limited to the α2C subtype. Here, we report the synthesis of 6-[18F]fluoro-marsanidine, a subtype-selective PET tracer candidate for α2A-adrenoceptors, and its preclinical evaluation in rats and mice.Procedures: 6-[18F]Fluoro-marsanidine was synthesized using electrophilic F-18 fluorination with [18F]Selectfluor bis(triflate). The tracer was evaluated in Sprague Dawley rats and in α2A-knockout (KO) and wild-type (WT) mice for subtype selectivity. In vivo PET imaging and ex vivo brain autoradiography were performed to determine the tracer distribution in the brain. The specificity of the tracer for the target was determined by pretreatment with the subtype-non-selective α2-agonist medetomidine. The peripheral biodistribution and extent of metabolism of 6-[18F]fluoro-marsanidine were also analyzed.Results: 6-[18F]Fluoro-marsanidine was synthesized with [18F]Selectfluor bis(triflate) in a radiochemical yield of 6.4 ± 1.7 %. The molar activity was 3.1 to 26.6 GBq/ÎŒmol, and the radiochemical purity was > 99 %. In vivo studies in mice revealed lower uptake in the brains of α2A-KO mice compared to WT mice. The results for selectivity were confirmed by ex vivo brain autoradiography. Blocking studies revealed reduced uptake in α2A-adrenoceptor-rich brain regions in pretreated animals, demonstrating the specificity of the tracer. Metabolite analyses revealed very rapid metabolism of 6-[18F]fluoro-marsanidine with blood-brain barrier-permeable metabolites in both rats and mice.Conclusion: 6-[18F]Fluoro-marsanidine was synthesized and evaluated as a PET tracer candidate for brain α2A-adrenoceptors. However, rapid metabolism, extensive presence of labeled metabolites in the brain, and high non-specific uptake in mouse and rat brain make 6-[18F]fluoro-marsanidine unsuitable for α2A-adrenoceptor targeting in rodents in vivo.</p

    Reversibility of myocardial metabolism and remodelling in morbidly obese patients 6 months after bariatric surgery

    Get PDF
    AbstractAIMS: To study myocardial substrate uptake, structure and function, before and after bariatric surgery, to clarify the interaction between myocardial metabolism and cardiac remodelling in morbid obesity.METHODS: We studied 46 obese patients (age 44 ± 10 years, body mass index [BMI] 42 ± 4 kg/m2 ), including 18 with type 2 diabetes (T2D) before and 6 months after bariatric surgery and 25 healthy age-matched control group subjects. Myocardial fasting free fatty acid uptake (MFAU) and insulin-stimulated myocardial glucose uptake (MGU) were measured using positron-emission tomography. Myocardial structure and function, and myocardial triglyceride content (MTGC) and intrathoracic fat were measured using magnetic resonance imaging and magnetic resonance spectroscopy.RESULTS: The morbidly obese study participants, with or without T2D, had cardiac hypertrophy, impaired myocardial function and substrate metabolism compared with the control group. Surgery led to marked weight reduction and remission of T2D in most of the participants. Postoperatively, myocardial function and structure improved and myocardial substrate metabolism normalized. Intrathoracic fat, but not MTGC, was reduced. Before surgery, BMI and MFAU correlated with left ventricular hypertrophy, and BMI, age and intrathoracic fat mass were the main variables associated with cardiac function. The improvement in whole-body insulin sensitivity correlated positively with the increase in MGU and the decrease in MFAU.CONCLUSIONS: In the present study, obesity and age, rather than myocardial substrate uptake, were the causes of cardiac remodelling in morbidly obese patients with or without T2D. Cardiac remodelling and impaired myocardial substrate metabolism are reversible after surgically induced weight loss and amelioration of T2D.</div

    Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts

    Get PDF
    Background: Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. Methods: Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([F-18] FDG) and hypoxia ([F-18] EF5), and intratumoral polarographic measurements of pO(2). Results: Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO(2) measurements, [F-18] EF5 and [F-18] FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. Conclusion: FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure

    Dopamine and Opioid Neurotransmission in Behavioral Addictions: A Comparative PET Study in Pathological Gambling and Binge Eating.

    Get PDF
    Although behavioral addictions share many clinical features with drug addictions, they show strikingly large variation in their behavioral phenotypes (such as in uncontrollable gambling or eating). Neurotransmitter function in behavioral addictions is poorly understood, but has important implications in understanding its relationship with substance use disorders and underlying mechanisms of therapeutic efficacy. Here, we compare opioid and dopamine function between two behavioral addiction phenotypes: pathological gambling (PG) and binge eating disorder (BED). Thirty-nine participants (15 PG, 7 BED, and 17 controls) were scanned with [11C]carfentanil and [18F]fluorodopa positron emission tomography using a high-resolution scanner. Binding potentials relative to non-displaceable binding (BPND) for [11C]carfentanil and influx rate constant (Ki) values for [18F]fluorodopa were analyzed with region-of-interest and whole-brain voxel-by-voxel analyses. BED subjects showed widespread reductions in [11C]carfentanil BPND in multiple subcortical and cortical brain regions and in striatal [18F]fluorodopa Ki compared with controls. In PG patients, [11C]carfentanil BPND was reduced in the anterior cingulate with no differences in [18F]fluorodopa Ki compared with controls. In the nucleus accumbens, a key region involved in reward processing, [11C]Carfentanil BPND was 30-34% lower and [18F]fluorodopa Ki was 20% lower in BED compared with PG and controls (p<0.002). BED and PG are thus dissociable as a function of dopaminergic and opioidergic neurotransmission. Compared with PG, BED patients show widespread losses of mu-opioid receptor availability together with presynaptic dopaminergic defects. These findings highlight the heterogeneity underlying the subtypes of addiction and indicate differential mechanisms in the expression of pathological behaviors and responses to treatment.This study was supported by the Academy of Finland (grant #256836), the Finnish Medical Foundation, the Finnish Alcohol Research Foundation and the Turku University Central Hospital (EVO grants). VV was supported by a Wellcome Trust Fellowship (093705/10/Z)
    corecore