17 research outputs found

    Integrating Analytical Models with Descriptive System Models: Implementation of the OMG SyML Standard for the Tool-specific Case of MapleSim and MagicDraw

    Get PDF
    AbstractThe Jet Propulsion Laboratory (JPL) is investing heavily in the development of an infrastructure for building system models using the Systems Modeling Language (SysML). An essential component is a transformation apparatus that permits diverse models to be integrated independently of their nature (e.g. declarative, analytical and statistical). This paper presents one useful case: the integration of analytical models expressed using the Modelica language. Modelica is an open standard, declarative, multi-domain modeling language that allows for complex dynamic systems to be modeled. Maplesoft's MapleSim is one software tool that supports the Modelica language. The tool-neutral specification for the transformation between the languages Modelica and SysML is defined in the SysML-Modelica transformation specification (SyML) standard published by the Object Management Group (OMG). As part of the development efforts, said specification has been implemented using the Query-View- Transformation Operational (QVTO) language. During the process, several critical changes to the current SyML standard were proposed. Furthermore, a number of current limitations related to MapleSim were identified. Despite these issues, a proof-of- concept transformation was successfully implemented. In conclusion, the integration of complex simulation models conforming to the Modelica language with SysML-based system models has shown great promise and is a highly useful tool to support the decision making process in design

    A convenient band-gap interpolation technique and an improved band line-up model for InGaAlAs on InP

    Get PDF
    The band-gap energy and the band line-up of InGaAlAs quaternary compound material on InP are essential information for the theoretical study of physical properties and the design of optoelectronics devices operating in the long-wavelength communication window. The band-gap interpolation of In1-x-y Ga (x) Al (y) As on InP is known to be a challenging task due to the observed discrepancy of experimental results arising from the bowing effect. Besides, the band line-up results of In1-x-y Ga (x) Al (y) As on InP based on previously reported models have limited success by far. In this work, we propose an interpolation solution using the single-variable surface bowing estimation interpolation method for the fitting of experimentally measured In1-x-y Ga (x) Al (y) As band-gap data with various degree of bowing using the same set of input parameters. The suggested solution provides an easier and more physically interpretable way to determine not only lattice matched, but also strained band-gap energy of In1-x-y Ga (x) Al (y) As on InP based on the experimental results. Interpolated results from this convenient method show a more favourable match to multiple independent experiment data sets measured under different temperature conditions as compared to those obtained from the commonly used weighted-sum approach. On top of that, extended framework of the model-solid theory for the band line-up of In1-x-y Ga (x) Al (y) As/InP heterostructure is proposed. Our model-solid theory band line-up result using the proposed extended framework has shown an improved accuracy over those without the extension. In contrast to some previously reported works, it is worth noting that the band line-up result based on our proposed extended model-solid theory has also shown to be more accurate than those given by Harrison's mode

    Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models

    Full text link

    The role of feline leukaemia virus in naturally-occurring leukaemias

    No full text
    No abstract available

    Composites for automotive body panels

    Full text link
    Abstract not available

    Molecular changes associated with hippocampal long-lasting depression induced by the serine protease subtilisin-A

    No full text
    The serine protease subtilisin-A (SubA) induces a form of long-term depression (LTD) of synaptic transmission in the rat hippocampus, and molecular changes associated with SubA-induced LTD (SubA-LTD) were explored by using recordings of evoked postsynaptic potentials and immunoblotting. SubA-LTD was prevented by a selective inhibitor of SubA proteolysis, but the same inhibitor did not affect LTD induced by electrical stimulation or activation of metabotropic glutamate receptors. SubA-LTD was reduced by the protein kinase inhibitors genistein and lavendustin A, although not by inhibitors of p38 mitogen-activated protein kinase, glycogen synthase kinase-3, or protein phosphatases. It was also reduced by (<i>RS</i>)-α-methyl-4-carboxyphenylglycine, a broad-spectrum antagonist at metabotropic glutamate receptors. Inhibition of the Rho kinase enzyme Rho-associated coiled-coil kinase reduced SubA-LTD, although inhibitors of the RhoGTPase-activating enzymes farnesyl transferase and geranylgeranyl transferase did not. In addition, a late phase of SubA-LTD was dependent on new protein synthesis. There was a small, non-significant difference in SubA-LTD between wild-type and RhoB<sup>-/-</sup> mice. Marked decreases were seen in the levels of Unc-5H3, a protein that is intimately involved in the development and plasticity of glutamatergic synapses. Smaller changes were noted, at higher concentrations of SubA, in Unc-5H1, vesicle-associated membrane protein-1 (synaptobrevin), and actin, with no changes in the levels of synaptophysin, synaptotagmin, RhoA, or RhoB. None of these changes was associated with LTD induced electrically or by the metabotropic glutamate receptor agonist (<i>RS</i>)-3,5-dihydroxyphenylglycine. These results indicate that SubA induces molecular changes that overlap with other forms of LTD, but that the overall molecular profile of SubA-LTD is quite differen

    Reducing uncertainty in ecosystem service modelling through weighted ensembles

    Get PDF
    Over the last decade many ecosystem service (ES) models have been developed to inform sustainable land and water use planning. However, uncertainty in the predictions of any single model in any specific situation can undermine their utility for decision-making. One solution is creating ensemble predictions, which potentially increase accuracy, but how best to create ES ensembles to reduce uncertainty is unknown and untested. Using ten models for carbon storage and nine for water supply, we tested a series of ensemble approaches against measured validation data in the UK. Ensembles had at minimum a 5–17% higher accuracy than a randomly selected individual model and, in general, ensembles weighted for among model consensus provided better predictions than unweighted ensembles. To support robust decision-making for sustainable development and reducing uncertainty around these decisions, our analysis suggests various ensemble methods should be applied depending on data quality, for example if validation data are available

    Autopsy Chemistry

    No full text

    Lockdown lessons: an international conversation on resilient GI science teaching

    Get PDF
    We report the findings from two global panel “conversations” that, stimulated by the exceptional coronavirus pandemic of 2020/21, explored the concept of resilience in geographic science teaching and learning. Characteristics of resilient teaching, both in general and with reference to GISc, are listed and shown to be essentially what might in the past have been called good teaching. Similarly, barriers to resilient teaching are explored and strategies for overcoming them listed. Perhaps the most important conclusion is a widespread desire not to “bounce back” to pre-COVID ways, but to use the opportunity to “bounce forward” towards better teaching and learning practices
    corecore