446 research outputs found
Evolution of Mass Outflow in Protostars
We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in
mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in
far-infrared [O I] emission. We use the results to derive their mass outflow
rates. Thereby we observe a strong correlation of mass outflow rates with
bolometric luminosity, and with the inferred mass accretion rates of the
central objects, which continues through the Class 0 range the trend observed
in Class II young stellar objects. Along this trend from large to small
mass-flow rates, the different classes of young stellar objects lie in the
sequence Class 0 -- Class I/flat-spectrum -- Class II, indicating that the
trend is an evolutionary sequence in which mass outflow and accretion rates
decrease together with increasing age, while maintaining rough proportionality.
The survey results include two which are key tests of magnetocentrifugal
outflow-acceleration mechanisms: the distribution of the outflow/accretion
branching ratio b, and limits on the distribution of outflow speeds. Neither
rule out any of the three leading outflow-acceleration,
angular-momentum-ejection mechanisms, but they provide some evidence that disk
winds and accretion-powered stellar winds (APSWs) operate in many protostars.
An upper edge observed in the branching-ratio distribution is consistent with
the upper bound of b = 0.6 found in models of APSWs, and a large fraction
(0.31) of the sample have branching ratio sufficiently small that only disk
winds, launched on scales as large as several AU, have been demonstrated to
account for them.Comment: Version submitted to ApJ: 36 pages, 3 tables, 8 figure
Synthesis of Molybdenum and Tungsten Alkylidene Complexes That Contain Sterically Demanding Arenethiolate Ligands
Imido alkylidene complexes of Mo and W and oxo alkylidene complexes of W that contain thiophenoxide ligands of the type S-2,3,5,6-Ph[subscript 4]C[subscript 6]H (STPP) and S-2,6-(mesityl)[subscript 2]C[subscript 6]H[subscript 3] (SHMT = S-hexamethylterphenyl) have been prepared in order to compare their metathesis activity with that of the analogous phenoxide complexes. All thiolate complexes were significantly slower (up to âŒ10Ă slower) for the metathesis homocoupling of 1-octene or polymerization of 2,3-dicarbomethoxynorbornene, and none of them was Z-selective. The slower rates could be attributed to the greater Ï-donating ability of a thiophenoxide versus the analogous phenoxide and consequently a higher electron density at the metal in the thiophenoxide complexes.National Institutes of Health (U.S.) (Grant GM-59426
Hubble and Spitzer Observations of an Edge-on Circumstellar Disk around a Brown Dwarf
We present observations of a circumstellar disk that is inclined close to
edge-on around a young brown dwarf in the Taurus star-forming region. Using
data obtained with SpeX at the NASA Infrared Telescope Facility, we find that
the slope of the 0.8-2.5 um spectrum of the brown dwarf 2MASS J04381486+2611399
cannot be reproduced with a photosphere reddened by normal extinction. Instead,
the slope is consistent with scattered light, indicating that circumstellar
material is occulting the brown dwarf. By combining the SpeX data with mid-IR
photometry and spectroscopy from the Spitzer Space Telescope and previously
published millimeter data from Scholz and coworkers, we construct the spectral
energy distribution for 2MASS J04381486+2611399 and model it in terms of a
young brown dwarf surrounded by an irradiated accretion disk. The presence of
both silicate absorption at 10 um and silicate emission at 11 um constrains the
inclination of the disk to be ~70 deg, i.e. ~20 deg from edge-on. Additional
evidence of the high inclination of this disk is provided by our detection of
asymmetric bipolar extended emission surrounding 2MASS J04381486+2611399 in
high-resolution optical images obtained with the Hubble Space Telescope.
According to our modeling for the SED and images of this system, the disk
contains a large inner hole that is indicative of a transition disk (R_in~58
R_star~0.275 AU) and is somewhat larger than expected from embryo ejection
models (R_out=20-40 AU vs. R_out<10-20 AU).Comment: The Astrophysical Journal, in pres
All bleeding stops: how we can help...
Rossaint and colleagues provide the critical care community with a comprehensive review of evidence-based data in an updated European guideline on management of bleeding following major trauma. In addition to reevaluating and grading recommendations carried forward from their previous work, they present new recommendations in areas such as coagulation support and monitoring, tourniquet usage, calcium, and desmopressin. Many of the recommendations are appropriately broad enough to promote the use of clinical judgment in the application of the guidelines
A Spitzer IRS Spectral Atlas of Luminous 8 micron Sources in the Large Magellanic Cloud
We present an atlas of Spitzer Space Telescope Infrared Spectrograph (IRS)
spectra of highly luminous, compact mid-infrared sources in the Large
Magellanic Cloud. Sources were selected on the basis of infrared colors and 8
micron (MSX) fluxes indicative of highly evolved, intermediate- to high-mass
stars with current or recent mass loss at large rates. We determine the
chemistry of the circumstellar envelope from the mid-IR continuum and spectral
features and classify the spectral types of the stars. In the sample of 60
sources, we find 21 Red Supergiants (RSGs), 16 C-rich Asymptotic Giant Branch
(AGB) stars, 11 HII regions, 4 likely O-rich AGB stars, 4 Galactic O-rich AGB
stars, 2 OH/IR stars, and 2 B[e] supergiants with peculiar IR spectra. We find
that the overwhelming majority of the sample AGB stars (with typical IR
luminosities ~1.0E4 L_sun) have C-rich envelopes, while the O-rich objects are
predominantly luminous RSGs with L_IR ~ 1.0E5 L_sun. We determine mean
bolometric corrections to the stellar K-band flux densities and find that for
carbon stars, the bolometric corrections depend on the infrared color, whereas
for RSGs, the bolometric correction is independent of IR color. Our results
reveal that objects previously classified as PNe on the basis of IR colors are
in fact compact HII regions with very red IRS spectra that include strong
atomic recombination lines and PAH emission features. We demonstrate that the
IRS spectral classes in our sample separate clearly in infrared color-color
diagrams that use combinations of 2MASS data and synthetic IRAC/MIPS fluxes
derived from the IRS spectra. On this basis, we suggest diagnostics to identify
and classify, with high confidence levels, IR-luminous evolved stars and HII
regions in nearby galaxies using Spitzer and near-infrared photometry.Comment: 46 pages, 9 figures; accepted for publication in AJ; abstract
abridge
Overview of the Kepler Science Processing Pipeline
The Kepler Mission Science Operations Center (SOC) performs several critical
functions including managing the ~156,000 target stars, associated target
tables, science data compression tables and parameters, as well as processing
the raw photometric data downlinked from the spacecraft each month. The raw
data are first calibrated at the pixel level to correct for bias, smear induced
by a shutterless readout, and other detector and electronic effects. A
background sky flux is estimated from ~4500 pixels on each of the 84 CCD
readout channels, and simple aperture photometry is performed on an optimal
aperture for each star. Ancillary engineering data and diagnostic information
extracted from the science data are used to remove systematic errors in the
flux time series that are correlated with these data prior to searching for
signatures of transiting planets with a wavelet-based, adaptive matched filter.
Stars with signatures exceeding 7.1 sigma are subjected to a suite of
statistical tests including an examination of each star's centroid motion to
reject false positives caused by background eclipsing binaries. Physical
parameters for each planetary candidate are fitted to the transit signature,
and signatures of additional transiting planets are sought in the residual
light curve. The pipeline is operational, finding planetary signatures and
providing robust eliminations of false positives.Comment: 8 pages, 3 figure
Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS
Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed. We illustrate how meteorological data inputs can introduce biases that vary in space and at seasonal timescales, but that can persist from year to year. We also observe that errors in SIMS estimates of land surface conductance can have a particularly strong dependence on time of year. Overall, meteorological inputs introduced RMSE of 0.33-0.65 mm/day (7-27%) across sites, while SIMS introduced RMSE of 0.55-0.83 mm/day (19-24%). The relative error contribution from meteorological inputs versus SIMS varied across sites; errors from SIMS were larger at one site, errors from meteorological inputs were larger at a second site, and the error contributions were of equal magnitude at the third site. The similar magnitude of error contributions is significant given that many satellite-driven ET models differ in their approaches to estimating land surface conductance, but often rely on similar or identical meteorological forcing data. The finding is particularly notable given that SIMS makes assumptions about the land surface (no soil evaporation or plant water stress) that do not always hold in practice. The results of this study show that improving SIMS by eliminating these assumptions would result in meteorological inputs dominating the error budget of the model on the whole. This finding underscores the need for further work on characterizing spatial uncertainty in the meteorological forcing of ET
- âŠ