319 research outputs found
Tiling groupoids and Bratteli diagrams
Let T be an aperiodic and repetitive tiling of R^d with finite local
complexity. Let O be its tiling space with canonical transversal X. The tiling
equivalence relation R_X is the set of pairs of tilings in X which are
translates of each others, with a certain (etale) topology. In this paper R_X
is reconstructed as a generalized "tail equivalence" on a Bratteli diagram,
with its standard AF-relation as a subequivalence relation.
Using a generalization of the Anderson-Putnam complex, O is identified with
the inverse limit of a sequence of finite CW-complexes. A Bratteli diagram B is
built from this sequence, and its set of infinite paths dB is homeomorphic to
X. The diagram B is endowed with a horizontal structure: additional edges that
encode the adjacencies of patches in T. This allows to define an etale
equivalence relation R_B on dB which is homeomorphic to R_X, and contains the
AF-relation of "tail equivalence".Comment: 34 pages, 4 figure
A two-species model of a two-dimensional sandpile surface: a case of asymptotic roughening
We present and analyze a model of an evolving sandpile surface in (2 + 1)
dimensions where the dynamics of mobile grains ({\rho}(x, t)) and immobile
clusters (h(x, t)) are coupled. Our coupling models the situation where the
sandpile is flat on average, so that there is no bias due to gravity. We find
anomalous scaling: the expected logarithmic smoothing at short length and time
scales gives way to roughening in the asymptotic limit, where novel and
non-trivial exponents are found.Comment: 7 Pages, 6 Figures; Granular Matter, 2012 (Online
The case for an international patient-reported outcomes measurement information system (PROMIS®) initiative.
Patient-reported outcomes (PROs) play an increasingly important role in clinical practice and research. Modern psychometric methods such as item response theory (IRT) enable the creation of item banks that support fixed-length forms as well as computerized adaptive testing (CAT), often resulting in improved measurement precision and responsiveness. Here we describe and discuss the case for developing an international core set of PROs building from the US PROMIS® network.PROMIS is a U.S.-based cooperative group of research sites and centers of excellence convened to develop and standardize PRO measures across studies and settings. If extended to a global collaboration, PROMIS has the potential to transform PRO measurement by creating a shared, unifying terminology and metric for reporting of common symptoms and functional life domains. Extending a common set of standardized PRO measures to the international community offers great potential for improving patient-centered research, clinical trials reporting, population monitoring, and health care worldwide. Benefits of such standardization include the possibility of: international syntheses (such as meta-analyses) of research findings; international population monitoring and policy development; health services administrators and planners access to relevant information on the populations they serve; better assessment and monitoring of patients by providers; and improved shared decision making.The goal of the current PROMIS International initiative is to ensure that item banks are translated and culturally adapted for use in adults and children in as many countries as possible. The process includes 3 key steps: translation/cultural adaptation, calibration, and validation. A universal translation, an approach focusing on commonalities, rather than differences across versions developed in regions or countries speaking the same language, is proposed to ensure conceptual equivalence for all items. International item calibration using nationally representative samples of adults and children within countries is essential to demonstrate that all items possess expected strong measurement properties. Finally, it is important to demonstrate that the PROMIS measures are valid, reliable and responsive to change when used in an international context.IRT item banking will allow for tailoring within countries and facilitate growth and evolution of PROs through contributions from the international measurement community. A number of opportunities and challenges of international development of PROs item banks are discussed
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya
Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Acceleration of Relativistic Protons during the 20 January 2005 Flare and CME
The origin of relativistic solar protons during large flare/CME events has
not been uniquely identified so far.We perform a detailed comparative analysis
of the time profiles of relativistic protons detected by the worldwide network
of neutron monitors at Earth with electromagnetic signatures of particle
acceleration in the solar corona during the large particle event of 20 January
2005. The intensity-time profile of the relativistic protons derived from the
neutron monitor data indicates two successive peaks. We show that microwave,
hard X-ray and gamma-ray emissions display several episodes of particle
acceleration within the impulsive flare phase. The first relativistic protons
detected at Earth are accelerated together with relativistic electrons and with
protons that produce pion decay gamma-rays during the second episode. The
second peak in the relativistic proton profile at Earth is accompanied by new
signatures of particle acceleration in the corona within approximatively 1
solar radius above the photosphere, revealed by hard X-ray and microwave
emissions of low intensity, and by the renewed radio emission of electron beams
and of a coronal shock wave. We discuss the observations in terms of different
scenarios of particle acceleration in the corona.Comment: 22 pages, 5 figure
- …