51 research outputs found
High-resolution in situ holographic recording and analysis of marine organisms and particles (HOLOMAR)
We report on the development of a fully- unctioning, prototype, underwater holographic camera (holo-camera) for holographic recording of large-volumes of sea water containing marine plankton and seston within the upper water column The overriding benefit of holographic imaging over other measurement techniques is that it allows non-intrusive and non-destructive, in-situ, recording of living organisms and inanimate particles in their natural environment.
Because of the inherently high resolution of holography, its threedimensional imaging properties and the ability to perform "optical sectioning" on the image, it allows identification of particular organisms together with the extraction of sue and relative positional information This information, in turn, affords the ability to gain knowledge of the behaviour of marine biological communities, their relationship with each other and with the particles with which they interact
Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations
Consider a large Boolean network with a feed forward structure. Given a
probability distribution on the inputs, can one find, possibly small,
collections of input nodes that determine the states of most other nodes in the
network? To answer this question, a notion that quantifies the determinative
power of an input over the states of the nodes in the network is needed. We
argue that the mutual information (MI) between a given subset of the inputs X =
{X_1, ..., X_n} of some node i and its associated function f_i(X) quantifies
the determinative power of this set of inputs over node i. We compare the
determinative power of a set of inputs to the sensitivity to perturbations to
these inputs, and find that, maybe surprisingly, an input that has large
sensitivity to perturbations does not necessarily have large determinative
power. However, for unate functions, which play an important role in genetic
regulatory networks, we find a direct relation between MI and sensitivity to
perturbations. As an application of our results, we analyze the large-scale
regulatory network of Escherichia coli. We identify the most determinative
nodes and show that a small subset of those reduces the overall uncertainty of
the network state significantly. Furthermore, the network is found to be
tolerant to perturbations of its inputs
CHICSi - a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. III. readout system
(CHICSi) Celsius Heavy Ion Collaboration Si detector system is a high granularity, modular detector telescope array for operation around the cluster-jet target/circulating beam intersection of the CELSIUS storage ring at the The. Svedberg Laboratory in Uppsala, Sweden. It is able to provide identity and momentum vector of up to 100 charged particles and fragments from proton-nucleus and nucleus-nucleus collisions at intermediate energies, 50-1000A MeV. All detector telescopes as well as the major part of electronic readout system are placed inside the target chamber in ultra-high vacuum (UHV, 10(-9)-10(-7) Pa). This requires Very Large Scale Integrated (VLSI) microchip for the spectroscopic signal processing and the generation and transport of digital control signals. Eighteen telescopes, read out with chip-on-board technique by ceramics Mother Boards (MB) and corresponding 18 microchips are mounted on a 450 x 45 mm(2) Grand Mother Board (GMB), processed on FR4 glass-fibre material. Each of these 28 GMB units contains a daisy-chain organisation of the VLSI chips and associated protection circuits. Analogue-to-digital conversion of the spectroscopic signals is performed on a board outside the chamber which is connected on one side to a power distribution board, directly attached to a UHV mounting flange, and on the other side to the VME-based data acquisition system (CHICSiDAQ). This in its turn is connected via a fibre-optic link to the general TSL acquisition system (SVEDAQ), and in this way data from auxiliary detector systems, read out in CAMAC mode, can be stored in coincidence with CHICSi data
- …