2 research outputs found

    Proof of concept: digital clock drawing behaviors prior to transcatheter aortic valve replacement may predict length of hospital stay and cost of care

    Get PDF
    Aims: Reduced pre-operative cognitive functioning in older adults is a risk factor for postoperative complications, but it is unknown if preoperative digitally-acquired clock drawing test (CDT) cognitive screening variables, which allow for more nuanced examination of patient performance, may predict lengthier hospital stay and greater cost of hospital care. This issue is particularly relevant for older adults undergoing transcatheter aortic valve replacement (TAVR), as this surgical procedure is chosen for intermediate-risk older adults needing aortic replacement. This proof of concept research explored if specific latency and graphomotor variables indicative of planning from digitally-acquired command and copy clock drawing would predict post-TAVR duration and cost of hospitalization, over and above age, education, American Society of Anesthesiologists (ASA) physical status classification score, and frailty. Methods: Form January 2018 to December 2019, 162 out of 190 individuals electing TAVR completed digital clock drawing as part of a hospital wide cognitive screening program. Separate hierarchical regressions were computed for the command and copy conditions of the CDT and assessed how a-priori selected clock drawing metrics (total time to completion, ideal digit placement difference, and hour hand distance from center; included within the same block) incrementally predicted outcome, as measured by R2 change significance values. Results: Above and beyond age, education, ASA physical status classification score, and frailty, only digitally-acquired CDT copy performance explained significant variance for length of hospital stay (9.5%) and cost of care (8.9%). Conclusions: Digital variables from clock copy condition provided predictive value over common demographic and comorbidity variables. We hypothesize this is due to the sensitivity of the copy condition to executive dysfunction, as has been shown in previous studies for subtypes of cognitive impairment. Individuals undergoing TAVR procedures are often frail and executively compromised due to their cerebrovascular disease. We encourage additional research on the value of digitally-acquired clock drawing within different surgery types. Type of cognitive impairment and the value of digitally-acquired CDT command and copy parameters in other surgeries remain unknown.</jats:p

    Normative References for Graphomotor and Latency Digital Clock Drawing Metrics for Adults Age 55 and Older: Operationalizing the Production of a Normal Appearing Clock

    No full text
    Background: Relative to the abundance of publications on dementia and clock drawing, there is limited literature operationalizing ‘normal’ clock production. Objective: To operationalize subtle behavioral patterns seen in normal digital clock drawing to command and copy conditions. Methods: From two research cohorts of cognitively-well participants age 55 plus who completed digital clock drawing to command and copy conditions (n = 430), we examined variables operationalizing clock face construction, digit placement, clock hand construction, and a variety of time-based, latency measures. Data are stratified by age, education, handedness, and number anchoring. Results: Normative data are provided in supplementary tables. Typical errors reported in clock research with dementia were largely absent. Adults age 55 plus produce symmetric clock faces with one stroke, with minimal overshoot and digit misplacement, and hands with expected hour hand to minute hand ratio. Data suggest digitally acquired graphomotor and latency differences based on handedness, age, education, and anchoring. Conclusion: Data provide useful benchmarks from which to assess digital clock drawing performance in Alzheimer’s disease and related dementias.</jats:p
    corecore