32 research outputs found

    The critical Ising model via Kac-Ward matrices

    Full text link
    The Kac-Ward formula allows to compute the Ising partition function on any finite graph G from the determinant of 2^{2g} matrices, where g is the genus of a surface in which G embeds. We show that in the case of isoradially embedded graphs with critical weights, these determinants have quite remarkable properties. First of all, they satisfy some generalized Kramers-Wannier duality: there is an explicit equality relating the determinants associated to a graph and to its dual graph. Also, they are proportional to the determinants of the discrete critical Laplacians on the graph G, exactly when the genus g is zero or one. Finally, they share several formal properties with the Ray-Singer \bar\partial-torsions of the Riemann surface in which G embeds.Comment: 30 pages, 10 figures; added section 4.4 in version

    Meaningful Metrics for Evaluating Eventual Consistency

    Full text link
    Abstract. Optimistic replication is a fundamental technique for supporting collaborative work practices in mobile environments. However, eventual consistency, in contrast to immediate strong consistency in pessimistic replication, is much harder to evaluate. This paper analyzes different metrics for measuring the effectiveness of eventually consistent systems. Using results from a simulated environment of relevant optimistic replication protocols, we show that each metric hides previously undocumented side effects. These add considerable imprecision to any evaluation that exclusively relies on a single metric. Hence, we advocate a combined methodology comprising three complementary metrics: commit ratio, average agreement delay and average commit delay.

    Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)

    Get PDF
    BACKGROUND: Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control. METHODS: Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: 5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease. INTERPRETATION: International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems

    The challenges of mobile computing

    No full text

    Support for Mobile Location-Aware Applications in MAGNET

    No full text
    A key characteristic of mobile applications is the need for up-to-date location-dependent information, while physical locations change frequently. Recent improvements in wireless communication and hardware technology and Internet-based data exchange has created a new type of mobile application whose requirements are not met by traditional relational and object database systems. In this paper we describe MAGNET, a tuplespace-based framework for dynamic information storage and retrieval, addressing the needs of applications in frequently changing mobile environments, and discuss how this approach could enable flexible data exchange. In addition to type-free data storage and user-customized requests for data records, MAGNET enables adaptation to changing environments by supporting constant monitoring of selected information

    Parameter Based Access Control Model for Mobile Handsets

    No full text

    Delay-Aware Mobile Transactions

    No full text
    Abstract. In the expanding e-society, mobile embedded systems are increasingly used to support transactions such as for banking, stock or database applications. Such systems entail a range of heterogeneous entities- both the embedded devices and the networks connecting them. While these systems are exposed to frequent and varied perturbations, the support of atomic distributed transactions is still a fundamental requirement to achieve consistent decisions. Guaranteeing atomicity and high performance in traditional fixed wired networks is based on the assumption that faults like node and link failures occur rarely. This assumption is not supported in current and future mobile embedded systems where the heterogeneity and mobility often result in link and node failures as a dominant operational scenario. In order to continue guaranteeing strict atomicity while providing for high efficiency (low resource blocking time and message overhead) and acceptable commit rate, transactional fault-tolerance techniques need to be revisited perhaps at the cost of transaction execution time. In this paper, a comprehensive classification of perturbations and their impact on the design of mobile transactions is provided. In particular we argue for the delay-awareness of mobile transactions to allow for the fault-tolerance mechanisms to ensure resilience to the various and frequent perturbations. Key words: Transactions, mobile database systems, dependability

    Architectura : Zeitschrift für Geschichte der Baukunst

    No full text
    Abstract. Determining the positions of the sensor nodes in a network is essential to many network functionalities such as routing, coverage and tracking, and event detection. The localization problem for sensor networks is to reconstruct the positions of all of the sensors in a network, given the distances between all pairs of sensors that are within some radius r of each other. In the past few years, many algorithms for solving the localization problem were proposed, without knowing the computational complexity of the problem. In this paper, we show that no polynomial-time algorithm can solve this problem in the worst case, even for sets of distance pairs for which a unique solution exists, unless RP = NP. We also discuss the consequences of our result and present open problems.
    corecore