557 research outputs found

    A simplified test of universality in Lattice QCD

    Full text link
    A simplified test of universality in Lattice QCD is performed by analytically evaluating the continuous Euclidean time limits of various lattice fermion determinants, both with and without a Wilson term to lift the fermion doubling on the Euclidean time axis, and comparing them with each other and with the zeta-regularised fermion determinant in the continuous time--lattice space setting. The determinant relations expected from universality considerations are found to be violated by a certain gauge field-dependent factor, i.e. we uncover a "universality anomaly". The physical significance, or lack thereof, of this factor is a delicate question which remains to be settled.Comment: 6 pages. v2: Revised to include a further result on the zeta-regularised fermion determinant in the continuous time--lattice space setting which impacts on the conclusions; typos corrected; acknowledgement and reference added; to appear in Phys.Rev.Let

    Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56

    Full text link
    We compare new maps of the hot gas, dark matter, and galaxies for 1E0657-56, a cluster with a rare, high-velocity merger occurring nearly in the plane of the sky. The X-ray observations reveal a bullet-like gas subcluster just exiting the collision site. A prominent bow shock gives an estimate of the subcluster velocity, 4500 km/s, which lies mostly in the plane of the sky. The optical image shows that the gas lags behind the subcluster galaxies. The weak-lensing mass map reveals a dark matter clump lying ahead of the collisional gas bullet, but coincident with the effectively collisionless galaxies. From these observations, one can directly estimate the cross-section of the dark matter self-interaction. That the dark matter is not fluid-like is seen directly in the X-ray -- lensing mass overlay; more quantitative limits can be derived from three simple independent arguments. The most sensitive constraint, sigma/m<1 cm^2/g, comes from the consistency of the subcluster mass-to-light ratio with the main cluster (and universal) value, which rules out a significant mass loss due to dark matter particle collisions. This limit excludes most of the 0.5-5 cm^2/g interval proposed to explain the flat mass profiles in galaxies. Our result is only an order-of-magnitude estimate which involves a number of simplifying, but always conservative, assumptions; stronger constraints may be derived using hydrodynamic simulations of this cluster.Comment: Text clarified; some numbers changed slightly for consistency with final version of the accompanying lensing paper. 6 pages, uses emulateapj. ApJ in pres

    ROSAT PSPC Observations of the Richest (R≄2R \geq 2) ACO Clusters

    Full text link
    We have compiled an X-ray catalog of optically selected rich clusters of galaxies observed by the PSPC during the pointed GO phase of the ROSAT mission. This paper contains a systematic X-ray analysis of 150 clusters with an optical richness classification of R≄2R \geq 2 from the ACO catalog (Abell, Corwin, and Olowin 1989). All clusters were observed within 45' of the optical axis of the telescope during pointed PSPC observations. For each cluster, we calculate: the net 0.5-2.0 keV PSPC count rate (or 4σ4 \sigma upper limit) in a 1 Mpc radius aperture, 0.5-2.0 keV flux and luminosity, bolometric luminosity, and X-ray centroid. The cluster sample is then used to examine correlations between the X-ray and optical properties of clusters, derive the X-ray luminosity function of clusters with different optical classifications, and obtain a quantitative estimate of contamination (i.e, the fraction of clusters with an optical richness significantly overestimated due to interloping galaxies) in the ACO catalog

    The burden of cutaneous melanoma and status of preventive measures in Central and South America

    Get PDF
    Rationale and objective Very little is known about the burden of cutaneous melanoma in Central and South America, despite the existence of a reasonable amount of population-based data. We present data on melanoma incidence calculated in a standardized way for Central and South America, as well as an overview of primary and secondary prevention issues in the region. Methods Cancer registry data on all incident cases reported in the different registries present in Central and South America were combined to provide registry-based country estimates of age-standardized, sex-specific cutaneous melanoma incidence overall, and by histological subtype and anatomical site. A literature search provided additional information. Results Age-standardized incidence rates were between 1 and 5 per 100,000 and tended to be higher further away from the equator. Cutaneous melanomas of the acral type, mostly occurring on the lower limbs, are a distinguishing feature of melanoma in Central and South America in comparison with high-incidence areas. Several preventive measures, both primary and secondary, are in place, albeit largely without evaluation. Conclusion Due to incomplete registration and different registration practices, reliable and comparable data on melanoma were difficult to obtain; thus it is likely that the true burden of melanoma in Central and South America has been underestimated. The different characteristics of the cutaneous melanoma patient population in terms of anatomical site and histological type distribution imply a need for adapted primary and secondary prevention measures. The generally high ambient ultraviolet radiation levels require sufficient sun protection measures

    Chandra X-ray Observations of the Hydra A Cluster: An Interaction Between the Radio Source and the X-Ray-Emitting Gas

    Get PDF
    We present Chandra X-ray Observations of the Hydra A cluster of galaxies, and we report the discovery of structure in the central 80 kpc of the cluster's X-ray-emitting gas. The most remarkable structures are depressions in the X-ray surface brightness, ∌25−35\sim 25-35 kpc diameter, that are coincident with Hydra A's radio lobes. The depressions are nearly devoid of X-ray-emitting gas, and there is no evidence for shock-heated gas surrounding the radio lobes. We suggest the gas within the surface brightness depressions was displaced as the radio lobes expanded subsonically, leaving cavities in the hot atmosphere. The gas temperature declines from 4 keV at 70 kpc to 3 keV in the inner 20 kpc of the brightest cluster galaxy (BCG), and the cooling time of the gas is ∌600\sim 600 Myr in the inner 10 kpc. These properties are consistent with the presence of a \sim 34 \msunyr cooling flow within a 70 kpc radius. Bright X-ray emission is present in the BCG surrounding a recently-accreted disk of nebular emission and young stars. The star formation rate is commensurate with the cooling rate of the hot gas within the volume of the disk, although the sink for the material cooling at larger radii remains elusive.Comment: 4 pages, 3 figures; submitted to ApJ Letter

    Stellar Metallicities and SNIa Rates in the Early-type Galaxy NGC5846 from ROSAT and ASCA Observations

    Full text link
    In this paper we analyze the diffuse X-ray coronae surrounding the elliptical galaxy NGC5846, combining measurements from two observatories, ROSAT and ASCA. We map the gas temperature distribution and find a central cool region within an approximately isothermal gas halo extending to a radius of about 50 kpc, and evidence for a temperature decrease at larger radii. With a radially falling temperature profile, the total mass converges to 9.6+/-1.0 10^12 Msun at ~230 kpc radius. Using the spectroscopic measurements, we also derive radial distributions for the heavy elements silicon and iron and find that the abundances of both decrease with galaxy radius. The mass ratio of Si to Fe lies between the theoretical predictions for element production in SN Ia and SN II, suggesting an important role for SN Ia, as well as SN II, for gas enrichment in ellipticals. Using the SN Ia yield of Si, we set an upper limit of 0.012 SNU for the SN Ia rate at radii >50 kpc, which is independent of possible uncertainties in the iron L-shell modeling. We compare our observations with the theoretical predictions for the chemical evolution of ellipticals, taken from Matteucci & Gibson (1995). We conclude that the metal content in stars, if explained by the star formation duration, requires a significant decline in the duration of star formation with galaxy radius, ranging from ~1 Gyr at the center to ~0.01 Gyr at 100 kpc radius. Alternatively, the decline in metallicity with galaxy radius may be caused by a similar drop with radius in the efficiency of star formation. Based on the Si and Fe measurements presented in this paper, we conclude that the latter scenario is preferred, unless a dependence of the SN Ia rate on stellar metallicity is invoked. (Abridged).Comment: 11 pages, figures&tables included, emulapj.sty, accepted for Ap

    Chandra Observation of Abell 2142: Survival of Dense Subcluster Cores in a Merger

    Get PDF
    We use Chandra data to map the gas temperature in the central region of the merging cluster A2142. The cluster is markedly nonisothermal; it appears that the central cooling flow has been disturbed but not destroyed by a merger. The X-ray image exhibits two sharp, bow-shaped, shock-like surface brightness edges or gas density discontinuities. However, temperature and pressure profiles across these edges indicate that these are not shock fronts. The pressure is reasonably continuous across these edges, while the entropy jumps in the opposite sense to that in a shock (i.e. the denser side of the edge has lower temperature, and hence lower entropy). Most plausibly, these edges delineate the dense subcluster cores that have survived a merger and ram pressure stripping by the surrounding shock-heated gas.Comment: Latex, 9 pages, 5 figures (including color), uses emulateapj.sty. Submitted to Ap

    A Deep Chandra Observation of the Distant Galaxy Cluster MS1137.5+6625

    Full text link
    We present results from a deep Chandra observation of MS1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much-needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.Comment: 16 pages, 6 figures, submitted to Ap
    • 

    corecore