14 research outputs found

    Walking Training Increases microRNA-126 Expression and Muscle Capillarization in Patients with Peripheral Artery Disease

    Get PDF
    Patients with peripheral artery disease (PAD) have reduced muscle capillary density. Walking training (WT) is recommended for PAD patients. The goal of the study was to verify whether WT promotes angiogenesis in PAD-affected muscle and to investigate the possible role of miRNA-126 and the vascular endothelium growth factor (VEGF) angiogenic pathways on this adaptation. Thirty-two men with PAD were randomly allocated to two groups: WT (n = 16, 2 sessions/week) and control (CO, n = 16). Maximal treadmill tests and gastrocnemius biopsies were performed at baseline and after 12 weeks. Histological and molecular analyses were performed by blinded researchers. Maximal walking capacity increased by 65% with WT. WT increased the gastrocnemius capillary-fiber ratio (WT = 109 ± 13 vs. 164 ± 21 and CO = 100 ± 8 vs. 106 ± 6%, p p p = 0.001, respectively), while expression of PI3KR2 decreased (WT = 97 ± 23 vs. 75 ± 21 and CO = 100 ± 29 vs. 105 ± 39%, p = 0.021). WT promoted angiogenesis in the muscle affected by PAD, and miRNA-126 may have a role in this adaptation by inhibiting PI3KR2, enabling the progression of the VEGF signaling pathway

    Atenolol blunts blood pressure increase during dynamic resistance exercise in hypertensives

    No full text
    center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.FAPESP[06/52726-1]FAPESP[06/06356-8

    Post-Exercise Hypotension and Its Mechanisms Differ after Morning and Evening Exercise: A Randomized Crossover Study

    No full text
    <div><p>Post-exercise hypotension (PEH), calculated by the difference between post and pre-exercise values, it is greater after exercise performed in the evening than the morning. However, the hypotensive effect of morning exercise may be masked by the morning circadian increase in blood pressure. This study investigated PEH and its hemodynamic and autonomic mechanisms after sessions of aerobic exercise performed in the morning and evening, controlling for responses observed after control sessions performed at the same times of day. Sixteen pre-hypertensive men underwent four sessions (random order): two conducted in the morning (7:30am) and two in the evening (5pm). At each time of day, subjects underwent an exercise (cycling, 45 min, 50%VO<sub>2</sub>peak) and a control (sitting rest) session. Measurements were taken pre- and post-interventions in all the sessions. The net effects of exercise were calculated for each time of day by [(post-pre exercise)-(post-pre control)] and were compared by paired t-test (P<0.05). Exercise hypotensive net effects (e.g., decreasing systolic, diastolic and mean blood pressure) occurred at both times of day, but systolic blood pressure reductions were greater after morning exercise (-7±3 vs. -3±4 mmHg, P<0.05). Exercise decreased cardiac output only in the morning (-460±771 ml/min, P<0.05), while it decreased stroke volume similarly at both times of day and increased heart rate less in the morning than in the evening (+7±5 vs. +10±5 bpm, P<0.05). Only evening exercise increased sympathovagal balance (+1.5±1.6, P<0.05) and calf blood flow responses to reactive hyperemia (+120±179 vs. -70±188 U, P<0.05). In conclusion, PEH occurs after exercise conducted at both times of day, but the systolic hypotensive effect is greater after morning exercise when circadian variations are considered. This greater effect is accompanied by a reduction of cardiac output due to a smaller increase in heart rate and cardiac sympathovagal balance.</p></div

    Physical and functional characteristics of the sample.

    No full text
    <p>Values in mean±SD. BP—blood pressure. VO<sub>2</sub> –oxygen uptake</p><p>Physical and functional characteristics of the sample.</p

    Hemodynamic, autonomic and vascular data assessed pre and post-interventions in the evening control (EC) and exercise (EE).

    No full text
    <p>Values in mean±SD. BP—blood pressure. LF—low frequency. HF—high frequency. CVR–calf vascular resistance. AUC–area under the curve.</p><p>* significantly different from pre-intervention (P≀0.05)</p><p># significantly different from control session (P≀0.05).</p><p>Hemodynamic, autonomic and vascular data assessed pre and post-interventions in the evening control (EC) and exercise (EE).</p

    Physical and functional characteristics of the sample.

    No full text
    <p>Values in mean±SD. BP—blood pressure. VO<sub>2</sub> –oxygen uptake</p><p>Physical and functional characteristics of the sample.</p

    Hemodynamic, autonomic and vascular data assessed pre and post interventions in the morning control (MC) and exercise (ME).

    No full text
    <p>Values in mean±SD. BP—blood pressure. LF—low frequency. HF—high frequency. CVR–calf vascular resistance. AUC–area under the curve.</p><p>* significantly different from pre-intervention (P≀0.05)</p><p># significantly different from control session (P≀0.05).</p><p>Hemodynamic, autonomic and vascular data assessed pre and post interventions in the morning control (MC) and exercise (ME).</p
    corecore