67 research outputs found

    In Vitro Enhancement of Collagen Deposition in Fully Biological Bioprinted Constructs

    Get PDF

    Limitations and pitfalls of 99mTc-EDDA/HYNIC-TOC (Tektrotyd) scintigraphy

    Get PDF
    Tektrotyd kit was developed by Polatom company for 99mTc labeling to make an alternative tracer of somatostatin receptor scintigraphy available. Since 2005, 99mTc-EDDA/HYNIC-Tyr3-Octreotide has been used in clinical imaging and achieved high impact in management of patients with neuroendocrine tumors. Knowing the limitations and pitfalls is essential to provide ac­curate diagnosis. Therefore, the potential pitfalls associated with the use of 99mTc-EDDA/HYNIC-TOC are reviewed on the basis of own experience. Data were analyzed of 310 patients who underwent somatostatin receptor scintigraphy with 99mTc-Tektrotyd. Pitfalls during radiolabeling process or acquisition can worsen the sensitivity of SRS (somatostatin receptor scintigraphy). Recognizing physi­ological and clinical pitfalls, the diagnostic accuracy will improve

    Before programs: The physical origination of multicellular forms

    Full text link
    ABSTRACT By examining the formative role of physical processes in modern-day developmental systems, we infer that although such determinants are subject to constraints and rarely act in a “pure ” fashion, they are identical to processes generic to all viscoelastic, chemically excitable media, non-living as well as living. The processes considered are free diffusion, immiscible liquid behavior, oscillation and multistability of chemical state, reaction-diffusion coupling and mecha-nochemical responsivity. We suggest that such processes had freer reign at early stages in the history of multicellular life, when less evolution had occurred of genetic mechanisms for stabilization and entrenchment of functionally successful morphologies. From this we devise a hypothetical scenario for pattern formation and morphogenesis in the earliest metazoa. We show that the expected morphologies that would arise during this relatively unconstrained “physical” stage of evolution correspond to the hollow, multilayered and segmented morphotypes seen in the gastrulation stage embryos of modern-day metazoa as well as in Ediacaran fossil deposits of ~600 Ma. We suggest several ways in which organisms that were originally formed by predomi-nantly physical mechanisms could have evolved genetic mechanisms to perpetuate their mor-phologies

    Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems

    Full text link
    Computer modeling of multicellular systems has been a valuable tool for interpreting and guiding in vitro experiments relevant to embryonic morphogenesis, tumor growth, angiogenesis and, lately, structure formation following the printing of cell aggregates as bioink particles. Computer simulations based on Metropolis Monte Carlo (MMC) algorithms were successful in explaining and predicting the resulting stationary structures (corresponding to the lowest adhesion energy state). Here we present two alternatives to the MMC approach for modeling cellular motion and self-assembly: (1) a kinetic Monte Carlo (KMC), and (2) a cellular particle dynamics (CPD) method. Unlike MMC, both KMC and CPD methods are capable of simulating the dynamics of the cellular system in real time. In the KMC approach a transition rate is associated with possible rearrangements of the cellular system, and the corresponding time evolution is expressed in terms of these rates. In the CPD approach cells are modeled as interacting cellular particles (CPs) and the time evolution of the multicellular system is determined by integrating the equations of motion of all CPs. The KMC and CPD methods are tested and compared by simulating two experimentally well known phenomena: (1) cell-sorting within an aggregate formed by two types of cells with different adhesivities, and (2) fusion of two spherical aggregates of living cells.Comment: 11 pages, 7 figures; submitted to Phys Rev

    Towards In Silico Bioprinting

    Get PDF

    Biofabrication : reappraising the definition of an evolving field

    Get PDF
    Biofabrication is an evolving research field that has recently received significant attention. In particular, the adoption of Biofabrication concepts within the field of Tissue Engineering and Regenerative Medicine has grown tremendously, and has been accompanied by a growing inconsistency in terminology. This article aims at clarifying the position of Biofabrication as a research field with a special focus on its relation to and application for Tissue Engineering and Regenerative Medicine. Within this context, we propose a refined working definition of Biofabrication, including Bioprinting and Bioassembly as complementary strategies within Biofabrication

    Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes

    Get PDF
    Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequences of reversible dismantling of the F-actin network in mouse oocytes prior to freezing. The study was complemented with the evaluation of post-thaw developmental competence of oocytes after in vitro fertilization. Our results show that the freezing-thawing process markedly alters the physiological viscoelastic properties of the actin cytoskeleton. The reversible depolymerization of the F-actin network prior to freezing preserves normal ooplasm viscoelastic properties, results in high post-thaw survival and significantly improves developmental competence. These findings provide new information on the biophysical characteristics of mammalian oocytes, identify a pathophysiological mechanism underlying cryodamage and suggest a novel cryopreservation method
    corecore